Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phytopathology ; 102(2): 140-6, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21942733

RESUMO

Potato cyst nematodes (PCNs) are quarantine organisms, and they belong to the economically most relevant pathogens of potato worldwide. Methodologies to assess the viability of their cysts, which can contain 200 to 500 eggs protected by the hardened cuticle of a dead female, are either time and labor intensive or lack robustness. We present a robust and cost-efficient viability assay based on loss of membrane integrity upon death. This assay uses trehalose, a disaccharide present at a high concentration in the perivitelline fluid of PCN eggs, as a viability marker. Although this assay can detect a single viable egg, the limit of detection for regular field samples was higher, ≈10 viable eggs, due to background signals produced by other soil components. On the basis of 30 nonviable PCN samples from The Netherlands, a threshold level was defined (ΔA(trehalose) = 0.0094) below which the presence of >10 viable eggs is highly unlikely (true for ≈99.7% of the observations). This assay can easily be combined with a subsequent DNA-based species determination. The presence of trehalose is a general phenomenon among cyst nematodes; therefore, this method can probably be used for (for example) soybean, sugar beet, and cereal cyst nematodes as well.


Assuntos
Doenças das Plantas/parasitologia , Solanum tuberosum/parasitologia , Trealose/análise , Tylenchoidea/fisiologia , Animais , Membrana Celular/química , Análise Custo-Benefício , DNA de Helmintos/genética , DNA de Helmintos/isolamento & purificação , Feminino , Países Baixos , Óvulo/química , Contagem de Ovos de Parasitas , Raízes de Plantas/parasitologia , Reação em Cadeia da Polimerase/métodos , Sensibilidade e Especificidade , Solo/parasitologia , Fatores de Tempo , Tylenchoidea/genética , Tylenchoidea/isolamento & purificação
2.
PLoS One ; 7(10): e47555, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23112818

RESUMO

Soils are among the most complex, diverse and competitive habitats on Earth and soil biota are responsible for ecosystem services such as nutrient cycling, carbon sequestration and remediation of freshwater. The extreme biodiversity prohibits the making of a full inventory of soil life. Hence, an appropriate indicator group should be selected to determine the biological condition of soil systems. Due to their ubiquity and the diverse responses to abiotic and biotic changes, nematodes are suitable indicators for environmental monitoring. However, the time-consuming microscopic analysis of nematode communities has limited the scale at which this indicator group is used. In an attempt to circumvent this problem, a quantitative PCR-based tool for the detection of a consistent part of the soil nematofauna was developed based on a phylum-wide molecular framework consisting of 2,400 full-length SSU rDNA sequences. Taxon-specific primers were designed and tested for specificity. Furthermore, relationships were determined between the quantitative PCR output and numbers of target nematodes. As a first field test for this DNA sequence signature-based approach, seasonal fluctuations of nematode assemblages under open canopy (one field) and closed canopy (one forest) were monitored. Fifteen taxa from four feeding guilds (covering ∼ 65% of the free-living nematode biodiversity at higher taxonomical level) were detected at two trophic levels. These four feeding guilds are composed of taxa that developed independently by parallel evolution and we detected ecologically interpretable patterns for free-living nematodes belonging to the lower trophic level of soil food webs. Our results show temporal fluctuations, which can be even opposite within taxa belonging to the same guild. This research on nematode assemblages revealed ecological information about the soil food web that had been partly overlooked.


Assuntos
DNA de Helmintos/genética , Nematoides/genética , Animais , DNA Ribossômico/genética , Nematoides/classificação , Reação em Cadeia da Polimerase , Estações do Ano , Solo/parasitologia
3.
4.
Mycorrhiza ; 15(1): 1-6, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-14669095

RESUMO

Molecular methods based on soil DNA extracts are increasingly being used to study the fungal diversity of ectomycorrhizal (EM) fungal communities in soil. Contrary to EM root tip identification, the use of molecular methods enables identification of extramatrical mycelia in soil. To compare fungal diversity as determined by root tip identification and mycelial identification, six soil samples were analysed. Root tips were extracted from the six samples and after amplification, the basidiomycete diversity on the root tips was analysed by denaturing gradient gel electrophoresis (DGGE). The soil from the six samples was sieved, total soil DNA was extracted and after amplification, the basidiomycete diversity in the soil fractions was analysed by DGGE. Fourteen different bands were excised from the DGGE gel and sequenced; fungal taxon names could be assigned to eight bands. Out of a total of 14 fungal taxa detected in soil, 11 fungal taxa were found on root tips, of which seven were EM fungal taxa. To examine whether the sieving treatment would affect EM species diversity, two different sieve mesh sizes were used and in addition, the organic soil fraction was analysed separately. DGGE analysis showed no differences in banding pattern for the different soil fractions. The organic fraction gave the highest DGGE band intensities. This work demonstrates that there is a high correspondence between basidiomycete diversity detected by molecular analysis of root tips and soil samples, irrespective of the soil fraction being analysed.


Assuntos
Basidiomycota/fisiologia , DNA Fúngico/genética , Micorrizas/fisiologia , Raízes de Plantas/microbiologia , Microbiologia do Solo , Basidiomycota/genética , Biodiversidade , Eletroforese em Gel de Ágar , Micorrizas/genética , Raízes de Plantas/genética , Reação em Cadeia da Polimerase
5.
FEMS Microbiol Ecol ; 45(3): 283-92, 2003 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-19719597

RESUMO

Mycelial biomass estimates in soils are usually obtained by measuring total hyphal length or by measuring the amount of fungal-specific biomarkers such as ergosterol and phospholipid fatty acids (PLFAs). These methods determine the biomass of the fungal community as a whole and do not allow species-specific identification. Molecular methods based on the extraction of total soil DNA and the use of genes as biomarkers enable identification of mycelia directly from the environment. Three molecular techniques were compared to determine the most reliable method for determining the biomass of individual fungal species in soil. The growth of extramatrical mycelium of two ectomycorrhizal (EM) fungal species (Suillus bovinus and Paxillus involutus) in soil was monitored by denaturing gradient gel electrophoresis, a cloning technique and real-time quantitative polymerase chain reaction, and the results were compared with those obtained with hyphal length determination and PLFA analysis. The molecular methods enabled identification and relative quantification of both species separately in an environment with several fungal species present and showed consistent results. Amounts of target DNA per gram soil were used to quantitatively compare soil samples. Increasing amounts of S. bovinus DNA and decreasing amounts of P. involutus DNA were detected over time in an environment containing a more complex community. This work demonstrates that molecular methods provide tools to determine the biomass of individual fungal species in soil.

6.
Appl Environ Microbiol ; 69(1): 327-33, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12514012

RESUMO

Molecular identification techniques based on total DNA extraction provide a unique tool for identification of mycelium in soil. Using molecular identification techniques, the ectomycorrhizal (EM) fungal community under coniferous vegetation was analyzed. Soil samples were taken at different depths from four horizons of a podzol profile. A basidiomycete-specific primer pair (ITS1F-ITS4B) was used to amplify fungal internal transcribed spacer (ITS) sequences from total DNA extracts of the soil horizons. Amplified basidiomycete DNA was cloned and sequenced, and a selection of the obtained clones was analyzed phylogenetically. Based on sequence similarity, the fungal clone sequences were sorted into 25 different fungal groups, or operational taxonomic units (OTUs). Out of 25 basidiomycete OTUs, 7 OTUs showed high nucleotide homology (> or = 99%) with known EM fungal sequences and 16 were found exclusively in the mineral soil. The taxonomic positions of six OTUs remained unclear. OTU sequences were compared to sequences from morphotyped EM root tips collected from the same sites. Of the 25 OTUs, 10 OTUs had > or = 98% sequence similarity with these EM root tip sequences. The present study demonstrates the use of molecular techniques to identify EM hyphae in various soil types. This approach differs from the conventional method of EM root tip identification and provides a novel approach to examine EM fungal communities in soil.


Assuntos
Basidiomycota/classificação , DNA Fúngico/análise , Micorrizas , Picea/microbiologia , Pinus/microbiologia , Microbiologia do Solo , Basidiomycota/genética , DNA Fúngico/isolamento & purificação , Dados de Sequência Molecular , Filogenia , Raízes de Plantas/microbiologia , Análise de Sequência de DNA , Solo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA