Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 782
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
N Engl J Med ; 387(5): 408-420, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35921450

RESUMO

BACKGROUND: Aggregated α-synuclein plays an important role in Parkinson's disease pathogenesis. Cinpanemab, a human-derived monoclonal antibody that binds to α-synuclein, is being evaluated as a disease-modifying treatment for Parkinson's disease. METHODS: In a 52-week, multicenter, double-blind, phase 2 trial, we randomly assigned, in a 2:1:2:2 ratio, participants with early Parkinson's disease to receive intravenous infusions of placebo (control) or cinpanemab at a dose of 250 mg, 1250 mg, or 3500 mg every 4 weeks, followed by an active-treatment dose-blinded extension period for up to 112 weeks. The primary end points were the changes from baseline in the Movement Disorder Society-sponsored revision of the Unified Parkinson's Disease Rating Scale (MDS-UPDRS) total score (range, 0 to 236, with higher scores indicating worse performance) at weeks 52 and 72. Secondary end points included MDS-UPDRS subscale scores and striatal binding as assessed on dopamine transporter single-photon-emission computed tomography (DaT-SPECT). RESULTS: Of the 357 enrolled participants, 100 were assigned to the control group, 55 to the 250-mg cinpanemab group, 102 to the 1250-mg group, and 100 to the 3500-mg group. The trial was stopped after the week 72 interim analysis owing to lack of efficacy. The change to week 52 in the MDS-UPDRS score was 10.8 points in the control group, 10.5 points in the 250-mg group, 11.3 points in the 1250-mg group, and 10.9 points in the 3500-mg group (adjusted mean difference vs. control, -0.3 points [95% confidence interval {CI}, -4.9 to 4.3], P = 0.90; 0.5 points [95% CI, -3.3 to 4.3], P = 0.80; and 0.1 point [95% CI, -3.8 to 4.0], P = 0.97, respectively). The adjusted mean difference at 72 weeks between participants who received cinpanemab through 72 weeks and the pooled group of those who started cinpanemab at 52 weeks was -0.9 points (95% CI, -5.6 to 3.8) for the 250-mg dose, 0.6 points (95% CI, -3.3 to 4.4) for the 1250-mg dose, and -0.8 points (95% CI, -4.6 to 3.0) for the 3500-mg dose. Results for secondary end points were similar to those for the primary end points. DaT-SPECT imaging at week 52 showed no differences between the control group and any cinpanemab group. The most common adverse events with cinpanemab were headache, nasopharyngitis, and falls. CONCLUSIONS: In participants with early Parkinson's disease, the effects of cinpanemab on clinical measures of disease progression and changes in DaT-SPECT imaging did not differ from those of placebo over a 52-week period. (Funded by Biogen; SPARK ClinicalTrials.gov number, NCT03318523.).


Assuntos
Anticorpos Monoclonais Humanizados , Antiparkinsonianos , Doença de Parkinson , alfa-Sinucleína , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais Humanizados/imunologia , Anticorpos Monoclonais Humanizados/uso terapêutico , Antiparkinsonianos/efeitos adversos , Método Duplo-Cego , Humanos , Doença de Parkinson/tratamento farmacológico , Resultado do Tratamento , alfa-Sinucleína/imunologia
2.
Ann Neurol ; 96(1): 99-109, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38578117

RESUMO

OBJECTIVES: To evaluate the effect of Alzheimer's disease (AD) -related biomarker change on clinical features, brain atrophy and functional connectivity of patients with corticobasal syndrome (CBS) and progressive supranuclear palsy (PSP). METHODS: Data from patients with a clinical diagnosis of CBS, PSP, and AD and healthy controls were obtained from the 4-R-Tauopathy Neuroimaging Initiative 1 and 2, the Alzheimer's Disease Neuroimaging Initiative, and a local cohort from the Toronto Western Hospital. Patients with CBS and PSP were divided into AD-positive (CBS/PSP-AD) and AD-negative (CBS/PSP-noAD) groups based on fluid biomarkers and amyloid PET scans. Cognitive, motor, and depression scores; AD fluid biomarkers (cerebrospinal p-tau, t-tau, and amyloid-beta, and plasma ptau-217); and neuroimaging data (amyloid PET, MRI and fMRI) were collected. Clinical features, whole-brain gray matter volume and functional networks connectivity were compared across groups. RESULTS: Data were analyzed from 87 CBS/PSP-noAD and 23 CBS/PSP-AD, 18 AD, and 30 healthy controls. CBS/PSP-noAD showed worse performance in comparison to CBS/PSP-AD in the PSPRS [mean(SD): 34.8(15.8) vs 23.3(11.6)] and the UPDRS scores [mean(SD): 34.2(17.0) vs 21.8(13.3)]. CBS/PSP-AD demonstrated atrophy in AD signature areas and brainstem, while CBS/PSP-noAD patients displayed atrophy in frontal and temporal areas, globus pallidus, and brainstem compared to healthy controls. The default mode network showed greatest disconnection in CBS/PSP-AD compared with CBS/PSP-no AD and controls. The thalamic network connectivity was most affected in CBS/PSP-noAD. INTERPRETATION: AD biomarker positivity may modulate the clinical presentation of CBS/PSP, with evidence of distinctive structural and functional brain changes associated with the AD pathology/co-pathology. ANN NEUROL 2024;96:99-109.


Assuntos
Doença de Alzheimer , Biomarcadores , Paralisia Supranuclear Progressiva , Humanos , Paralisia Supranuclear Progressiva/diagnóstico por imagem , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Feminino , Masculino , Idoso , Biomarcadores/sangue , Pessoa de Meia-Idade , Proteínas tau/líquido cefalorraquidiano , Proteínas tau/sangue , Tomografia por Emissão de Pósitrons , Imageamento por Ressonância Magnética , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/sangue , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Degeneração Corticobasal/diagnóstico por imagem , Atrofia/patologia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia
3.
Brain ; 147(6): 1975-1981, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38530646

RESUMO

Oculogyric crises are acute episodes of sustained, typically upward, conjugate deviation of the eyes. Oculogyric crises usually occur as the result of acute D2-dopamine receptor blockade, but the brain areas causally involved in generating this symptom remain elusive. Here, we used data from 14 previously reported cases of lesion-induced oculogyric crises and employed lesion network mapping to identify their shared connections throughout the brain. This analysis yielded a common network that included basal ganglia, thalamic and brainstem nuclei, as well as the cerebellum. Comparison of this network with gene expression profiles associated with the dopamine system revealed spatial overlap specifically with the gene coding for dopamine receptor type 2 (DRD2), as defined by a large-scale transcriptomic database of the human brain. Furthermore, spatial overlap with DRD2 and DRD3 gene expression was specific to brain lesions associated with oculogyric crises when contrasted to lesions that led to other movement disorders. Our findings identify a common neural network causally involved in the occurrence of oculogyric crises and provide a pathophysiological link between lesion locations causing this syndrome and its most common pharmacological cause, namely DRD2 blockade.


Assuntos
Encéfalo , Transtornos da Motilidade Ocular , Receptores de Dopamina D2 , Transcriptoma , Humanos , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismo , Transtornos da Motilidade Ocular/genética , Encéfalo/metabolismo , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Rede Nervosa/metabolismo , Idoso , Dopamina/metabolismo , Receptores de Dopamina D3/genética , Receptores de Dopamina D3/metabolismo
4.
Brain ; 147(4): 1399-1411, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37972275

RESUMO

The most frequent neurodegenerative proteinopathies include diseases with deposition of misfolded tau or α-synuclein in the brain. Pathological protein aggregates in the PNS are well-recognized in α-synucleinopathies and have recently attracted attention as a diagnostic biomarker. However, there is a paucity of observations in tauopathies. To characterize the involvement of the PNS in tauopathies, we investigated tau pathology in cranial and spinal nerves (PNS-tau) in 54 tauopathy cases [progressive supranuclear palsy (PSP), n = 15; Alzheimer's disease (AD), n = 18; chronic traumatic encephalopathy (CTE), n = 5; and corticobasal degeneration (CBD), n = 6; Pick's disease, n = 9; limbic-predominant neuronal inclusion body 4-repeat tauopathy (LNT), n = 1] using immunohistochemistry, Gallyas silver staining, biochemistry, and seeding assays. Most PSP cases revealed phosphorylated and 4-repeat tau immunoreactive tau deposits in the PNS as follows: (number of tau-positive cases/available cases) cranial nerves III: 7/8 (88%); IX/X: 10/11 (91%); and XII: 6/6 (100%); anterior spinal roots: 10/10 (100%). The tau-positive inclusions in PSP often showed structures with fibrillary (neurofibrillary tangle-like) morphology in the axon that were also recognized with Gallyas silver staining. CBD cases rarely showed fine granular non-argyrophilic tau deposits. In contrast, tau pathology in the PNS was not evident in AD, CTE and Pick's disease cases. The single LNT case also showed tau pathology in the PNS. In PSP, the severity of PNS-tau involvement correlated with that of the corresponding nuclei, although, occasionally, p-tau deposits were present in the cranial nerves but not in the related brainstem nuclei. Not surprisingly, most of the PSP cases presented with eye movement disorder and bulbar symptoms, and some cases also showed lower-motor neuron signs. Using tau biosensor cells, for the first time we demonstrated seeding capacity of tau in the PNS. In conclusion, prominent PNS-tau distinguishes PSP from other tauopathies. The morphological differences of PNS-tau between PSP and CBD suggest that the tau pathology in PNS could reflect that in the central nervous system. The high frequency and early presence of tau lesions in PSP suggest that PNS-tau may have clinical and biomarker relevance.


Assuntos
Doença de Alzheimer , Doença de Pick , Paralisia Supranuclear Progressiva , Tauopatias , Humanos , Paralisia Supranuclear Progressiva/patologia , Proteínas tau/metabolismo , Doença de Pick/patologia , Doença de Alzheimer/patologia , Tauopatias/patologia , Nervos Espinhais , Biomarcadores
5.
Neurobiol Dis ; 197: 106535, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38761956

RESUMO

BACKGROUND: Multiple system atrophy (MSA) is a primary oligodendroglial synucleinopathy, characterized by elevated iron burden in early-affected subcortical nuclei. Although neurotoxic effects of brain iron deposition and its relationship with α-synuclein pathology have been demonstrated, the exact role of iron dysregulation in MSA pathogenesis is unknown. Therefore, advancing the understanding of iron dysregulation at the cellular level is critical, especially in relation to α-synuclein cytopathology. METHODS: Iron burden in subcortical and brainstem regions were histologically mapped in human post-mortem brains of 4 MSA-parkinsonian (MSA-P), 4 MSA-cerebellar (MSA-C), and 1 MSA case with both parkinsonian and cerebellar features. We then performed the first cell type-specific evaluation of pathological iron deposition in α-synuclein-affected and -unaffected cells of the globus pallidus, putamen, and the substantia nigra, regions of highest iron concentration, using a combination of iron staining with immunolabelling. Selective regional and cellular vulnerability patterns of iron deposition were compared between disease subtypes. In 7 MSA cases, expression of key iron- and closely related oxygen-homeostatic genes were examined. RESULTS: MSA-P and MSA-C showed different patterns of regional iron burden across the pathology-related systems. We identified subcortical microglia to predominantly accumulate iron, which was more distinct in MSA-P. MSA-C showed relatively heterogenous iron accumulation, with greater or similar deposition in astroglia. Iron deposition was also found outside cellular bodies. Cellular iron burden associated with oligodendrocytic, and not neuronal, α-synuclein cytopathology. Gene expression analysis revealed dysregulation of oxygen homeostatic genes, rather than of cellular iron. Importantly, hierarchal cluster analysis revealed the pattern of cellular vulnerability to iron accumulation, distinctly to α-synuclein pathology load in the subtype-related systems, to distinguish MSA subtypes. CONCLUSIONS: Our comprehensive evaluation of iron deposition in MSA brains identified distinct regional, and for the first time, cellular distribution of iron deposition in MSA-P and MSA-C and revealed cellular vulnerability patterns to iron deposition as a novel neuropathological characteristic that predicts MSA clinical subtypes. Our findings suggest distinct iron-related pathomechanisms in MSA clinical subtypes that are therefore not a consequence of a uniform down-stream pathway to α-synuclein pathology, and inform current efforts in iron chelation therapies at the disease and cellular-specific levels.


Assuntos
Ferro , Atrofia de Múltiplos Sistemas , alfa-Sinucleína , Humanos , Atrofia de Múltiplos Sistemas/metabolismo , Atrofia de Múltiplos Sistemas/patologia , Ferro/metabolismo , Masculino , Idoso , Feminino , Pessoa de Meia-Idade , alfa-Sinucleína/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Idoso de 80 Anos ou mais , Oligodendroglia/metabolismo , Oligodendroglia/patologia
6.
Neurobiol Dis ; 198: 106551, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38839023

RESUMO

Multiple system atrophy (MSA) is characterized by glial cytoplasmic inclusions (GCIs) containing aggregated α-synuclein (α-syn) in oligodendrocytes. The origin of α-syn accumulation in GCIs is unclear, in particular whether abnormal α-syn aggregates result from the abnormal elevation of endogenous α-syn expression in MSA or ingested from the neuronal source. Tubulin polymerization promoting protein (TPPP) has been reported to play a crucial role in developing GCI pathology. Here, the total cell body, nucleus, and cytoplasmic area density of SNCA and TPPP transcripts in neurons and oligodendrocytes with and without various α-syn pathologies in the pontine base in autopsy cases of MSA (n = 4) and controls (n = 2) were evaluated using RNAscope with immunofluorescence. Single-nucleus RNA-sequencing data for TPPP was evaluated using control frontal cortex (n = 3). SNCA and TPPP transcripts were present in the nucleus and cytoplasm of oligodendrocytes in both controls and diseased, with higher area density in GCIs and glial nuclear inclusions in MSA. Area densities of SNCA and TPPP transcripts were lower in neurons showing cytoplasmic inclusions in MSA. Indeed, TPPP transcripts were unexpectedly found in neurons, while the anti-TPPP antibody failed to detect immunoreactivity. Single-nucleus RNA-sequencing revealed significant TPPP transcript expression predominantly in oligodendrocytes, but also in excitatory and inhibitory neurons. This study addressed the unclear origin of accumulated α-syn in GCIs, proposing that the elevation of SNCA transcripts may supply templates for misfolded α-syn. In addition, the parallel behavior of TPPP and SNCA transcripts in GCI development highlights their potential synergistic contribution to inclusion formation. In conclusion, this study advances our understanding of MSA pathogenesis, offers insights into the dynamics of SNCA and TPPP transcripts in inclusion formation, and proposes regulating their transcripts for future molecular therapy to MSA.


Assuntos
Corpos de Inclusão , Atrofia de Múltiplos Sistemas , Proteínas do Tecido Nervoso , Oligodendroglia , alfa-Sinucleína , alfa-Sinucleína/metabolismo , alfa-Sinucleína/genética , Atrofia de Múltiplos Sistemas/genética , Atrofia de Múltiplos Sistemas/patologia , Atrofia de Múltiplos Sistemas/metabolismo , Humanos , Oligodendroglia/metabolismo , Oligodendroglia/patologia , Corpos de Inclusão/metabolismo , Corpos de Inclusão/patologia , Corpos de Inclusão/genética , Idoso , Feminino , Masculino , Pessoa de Meia-Idade , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Idoso de 80 Anos ou mais
7.
Neuropathol Appl Neurobiol ; 50(2): e12978, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38634242

RESUMO

AIMS: Hirano bodies (HBs) are eosinophilic pathological structures with two morphological phenotypes commonly found in the hippocampal CA1 region in Alzheimer's disease (AD). This study evaluated the prevalence and distribution of HBs in AD and other neurodegenerative diseases. METHODS: This cross-sectional study systematically evaluated HBs in a cohort of 193 cases with major neurodegenerative diseases, including AD (n = 91), Lewy body disease (LBD, n = 87), progressive supranuclear palsy (PSP, n = 36), multiple system atrophy (MSA, n = 14) and controls (n = 26). The prevalence, number and morphology of HBs in the stratum lacunosum (HBL) and CA1 pyramidal cell layer were examined. In addition, we investigated the presence of HBs in five additional hippocampal subregions. RESULTS: The morphological types of HBs in CA1 were divided into three, including a newly discovered type, and were evaluated separately, with their morphology confirmed in three dimensions: (1) classic rod-shaped HB (CHB), (2) balloon-shaped HB (BHB) and the newly described (3) string-shaped HB (SHB). The prevalence of each HB type differed between disease groups: Compared with controls, for CHB in AD, AD + LBD, PSP and corticobasal degeneration, for BHB in AD + LBD and PSP, and SHB in AD + LBD and PSP were significantly increased. Regression analysis showed that CHBs were independently associated with higher Braak NFT stage, BHBs with LBD and TDP-43 pathology, SHBs with higher Braak NFT stage, PSP and argyrophilic grain disease and HBLs with MSA. CONCLUSIONS: This study demonstrates that HBs are associated with diverse neurodegenerative diseases and shows that morphological types appear distinctively in various conditions.


Assuntos
Doença de Alzheimer , Doença por Corpos de Lewy , Atrofia de Múltiplos Sistemas , Paralisia Supranuclear Progressiva , Humanos , Estudos Transversais , Doença de Alzheimer/patologia , Doença por Corpos de Lewy/patologia , Paralisia Supranuclear Progressiva/patologia
8.
Ann Neurol ; 93(3): 431-445, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36309960

RESUMO

OBJECTIVE: Progressive supranuclear palsy (PSP) is a 4R-tauopathy showing heterogeneous tau cytopathology commencing in the globus pallidus (GP) and the substantia nigra (SN), regions also associated with age-related iron accumulation. Abnormal iron levels have been extensively associated with tau pathology in neurodegenerative brains, however, its role in PSP pathogenesis remains yet unknown. We perform the first cell type-specific evaluation of PSP iron homeostasis and the closely related oxygen homeostasis, in relation to tau pathology in human postmortem PSP brains. METHODS: In brain regions vulnerable to PSP pathology (GP, SN, and putamen), we visualized iron deposition in tau-affected and unaffected neurons, astroglia, oligodendrocytes, and microglia, using a combination of iron staining with immunolabelling. To further explore molecular pathways underlying our observations, we examined the expression of key iron and oxygen homeostasis mRNA transcripts and proteins. RESULTS: We found astrocytes as the major cell type accumulating iron in the early affected regions of PSP, highly associated with cellular tau pathology. The same regions are affected by dysregulated expression of alpha and beta hemoglobin and neuroglobin showing contrasting patterns. We discovered changes in iron and oxygen homeostasis-related gene expression associated with aging of the brain, and identified dysregulated expression of rare neurodegeneration with brain iron accumulation (NBIA) genes associated with tau pathology to distinguish PSP from the healthy aging brain. INTERPRETATION: We present novel aspects of PSP pathophysiology highlighting an overlap with NBIA pathways. Our findings reveal potential novel targets for therapy development and have implications beyond PSP for other iron-associated neurodegenerative diseases. ANN NEUROL 2023;93:431-445.


Assuntos
Ferro , Paralisia Supranuclear Progressiva , Humanos , Ferro/metabolismo , Proteínas tau/metabolismo , Paralisia Supranuclear Progressiva/metabolismo , Encéfalo/patologia , Oxigênio
9.
Ann Neurol ; 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37794693

RESUMO

Rapid eye movement sleep behavior disorder (RBD) is the strongest prodromal marker for α-synucleinopathies. The Horvath DNA methylation age (DNAm-age) is an epigenetic clock reflecting biological aging. We found an association of DNAm-age acceleration with RBD age at onset at baseline (N = 162, B = -0.68, standard error [SE] = 0.12, p = 2.59e-08) and follow-up (n = 45, B = -1.07, SE = 0.21, p = 9.73e-06). The result remained similar after accounting for genetic risk factors (eg, RBD polygenic risk score). On average, RBD patients with faster versus slow/normal epigenetic aging had a 5.2-year earlier phenoconversion, and the Cox regression analysis revealed a trend toward significance (n = 53, hazard ratio = 1.05, 95% confidence interval = 0.99-1.11, p = 0.06). Our findings suggest that DNAm-age acceleration is a potential biomarker for earlier RBD onset. ANN NEUROL 2023.

10.
Mov Disord ; 39(2): 235-248, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38234035

RESUMO

BACKGROUND: Impulse-control and related behavioral disorders (ICBDs) significantly impact the lives of Parkinson's disease (PD) patients and caregivers, with lasting consequences if undiagnosed and untreated. While ICBD pathophysiology and risk factors are well-studied, a standardized severity definition and treatment evidence remain elusive. OBJECTIVE: This work aimed to establish international expert consensus on ICBD treatment strategies. To comprehensively address diverse treatment availabilities, experts from various continents were included. METHODS: From 2021 to 2023, global movement disorders specialists engaged in a Delphi process. A core expert group initiated surveys, involving a larger panel in three iterations, leading to refined severity definitions and treatment pathways. RESULTS: Experts achieved consensus on defining ICBD severity, emphasizing regular PD patient screenings for early detection. General treatment recommendations focused on continuous monitoring, collaboration with significant others, and seeking specialist advice for legal or financial challenges. For mild to severe ICBDs, gradual reduction in dopamine agonists was endorsed, followed by reductions in other PD medications. Second-line treatment strategies included diverse approaches like reversing the last medication change, cognitive behavior therapy, subthalamic nucleus deep brain stimulation, and specific medications like quetiapine, clozapine, and antidepressants. The panel reached consensus on distinct treatment pathways for punding and dopamine dysregulation syndrome, formulating therapy recommendations. Comprehensive discussions addressed management strategies for the exacerbation of either motor or non-motor symptoms following the proposed treatments. CONCLUSION: The consensus offers in-depth insights into ICBD management, presenting clear severity criteria and expert consensus treatment recommendations. The study highlights the critical need for further research to enhance ICBD management. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Estimulação Encefálica Profunda , Transtornos Disruptivos, de Controle do Impulso e da Conduta , Transtornos Mentais , Doença de Parkinson , Humanos , Doença de Parkinson/terapia , Doença de Parkinson/tratamento farmacológico , Consenso , Transtornos Mentais/terapia , Dopamina/metabolismo , Agonistas de Dopamina/uso terapêutico , Transtornos Disruptivos, de Controle do Impulso e da Conduta/etiologia , Transtornos Disruptivos, de Controle do Impulso e da Conduta/terapia
11.
Mov Disord ; 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38946200

RESUMO

Various forms of Parkinson's disease, including its common sporadic form, are characterized by prominent α-synuclein (αSyn) aggregation in affected brain regions. However, the role of αSyn in the pathogenesis and evolution of the disease remains unclear, despite vast research efforts of more than a quarter century. A better understanding of the role of αSyn, either primary or secondary, is critical for developing disease-modifying therapies. Previous attempts to hone this research have been challenged by experimental limitations, but recent technological advances may facilitate progress. The Scientific Issues Committee of the International Parkinson and Movement Disorder Society (MDS) charged a panel of experts in the field to discuss current scientific priorities and identify research strategies with potential for a breakthrough. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.

12.
Mov Disord ; 39(6): 975-982, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38644623

RESUMO

BACKGROUND AND OBJECTIVE: The Levodopa in EArly Parkinson's disease study showed no effect of earlier versus later levodopa initiation on Parkinson's disease (PD) progression over 80 weeks. We now report the effects over 5 years. METHODS: The Levodopa in EArly Parkinson's disease study randomly assigned patients to levodopa/carbidopa 300/75 mg daily for 80 weeks (early start) or to placebo for 40 weeks followed by levodopa/carbidopa 300/75 mg daily for 40 weeks (delayed start). Follow-up visits were performed 3 and 5 years after baseline. We assessed the between-group differences in terms of square root transformed total Unified Parkinson's Disease Rating Scale score at 3 and 5 years with linear regression. We compared the prevalence of dyskinesia, prevalence of wearing off, and the levodopa equivalent daily dose. RESULTS: A total of 321 patients completed the 5-year visit. The adjusted square root transformed total Unified Parkinson's Disease Rating Scale did not differ between treatment groups at 3 (estimated difference, 0.17; standard error, 0.13; P = 0.18) and 5 years (estimated difference, 0.24; standard error, 0.13; P = 0.07). At 5 years, 46 of 160 patients in the early-start group and 62 of 161 patients in the delayed-start group experienced dyskinesia (P = 0.06). The prevalence of wearing off and the levodopa equivalent daily dose were not significantly different between groups. CONCLUSIONS: We did not find a difference in disease progression or in prevalence of motor complications between patients with early PD starting treatment with a low dose of levodopa 40 weeks earlier versus 40 weeks later over the subsequent 5 years. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Antiparkinsonianos , Carbidopa , Levodopa , Doença de Parkinson , Humanos , Levodopa/administração & dosagem , Levodopa/efeitos adversos , Levodopa/uso terapêutico , Doença de Parkinson/tratamento farmacológico , Antiparkinsonianos/administração & dosagem , Antiparkinsonianos/efeitos adversos , Antiparkinsonianos/uso terapêutico , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Carbidopa/administração & dosagem , Carbidopa/efeitos adversos , Seguimentos , Progressão da Doença , Resultado do Tratamento , Método Duplo-Cego , Combinação de Medicamentos , Índice de Gravidade de Doença , Fatores de Tempo
13.
Mov Disord ; 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38847384

RESUMO

BACKGROUND: Multiple system atrophy is a neurodegenerative disease with α-synuclein aggregation in glial cytoplasmic inclusions, leading to dysautonomia, parkinsonism, and cerebellar ataxia. OBJECTIVE: The aim of this study was to validate the accuracy of the International Parkinson and Movement Disorder Society Multiple System Atrophy clinical diagnostic criteria, particularly considering the impact of the newly introduced brain magnetic resonance imaging (MRI) markers. METHODS: Diagnostic accuracy of the clinical diagnostic criteria for multiple system atrophy was estimated retrospectively in autopsy-confirmed patients with multiple system atrophy, Parkinson's disease, progressive supranuclear palsy, and corticobasal degeneration. RESULTS: We identified a total of 240 patients. Sensitivity of the clinically probable criteria was moderate at symptom onset but improved with disease duration (year 1: 9%, year 3: 39%, final ante mortem record: 77%), whereas their specificity remained consistently high (99%-100% throughout). Sensitivity of the clinically established criteria was low during the first 3 years (1%-9%), with mild improvement at the final ante mortem record (22%), whereas specificity remained high (99%-100% throughout). When MRI features were excluded from the clinically established criteria, their sensitivity increased considerably (year 1: 3%, year 3: 22%, final ante mortem record: 48%), and their specificity was not compromised (99%-100% throughout). CONCLUSIONS: The International Parkinson and Movement Disorder Society multiple system atrophy diagnostic criteria showed consistently high specificity and low to moderate sensitivity throughout the disease course. The MRI markers for the clinically established criteria reduced their sensitivity without improving specificity. Combining clinically probable and clinically established criteria, but disregarding MRI features, yielded the best sensitivity with excellent specificity and may be most appropriate to select patients for therapeutic trials. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.

14.
Artigo em Inglês | MEDLINE | ID: mdl-38916622

RESUMO

In pursuit of early therapeutic interventions for Parkinson's disease, the proposed SynNeurGe classification system integrates α-synuclein pathology (S), neurodegeneration evidence (N), and pathogenic gene variants (G). This approach aims to address the disease's complexity and biological diversity. It suggests categorizing patients based on the presence or absence of α-synuclein pathology in tissues or cerebrospinal fluid, neurodegeneration indicators from specific imaging techniques, and identification of pathogenic gene variants associated with Parkinson's disease. The proposed system emphasizes the future need for precision medicine and aims to facilitate both basic and clinical research toward disease-modifying therapies. However, the authors stress that initial implementation should be confined to research settings, considering ethical implications and current limitations. Prospective validation of these criteria is deemed necessary to ensure their efficacy and ethical application in clinical practice.

15.
Brain ; 146(7): 2753-2765, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-36478228

RESUMO

Biallelic mutations in PINK1/PRKN cause recessive Parkinson's disease. Given the established role of PINK1/Parkin in regulating mitochondrial dynamics, we explored mitochondrial DNA integrity and inflammation as disease modifiers in carriers of mutations in these genes. Mitochondrial DNA integrity was investigated in a large collection of biallelic (n = 84) and monoallelic (n = 170) carriers of PINK1/PRKN mutations, idiopathic Parkinson's disease patients (n = 67) and controls (n = 90). In addition, we studied global gene expression and serum cytokine levels in a subset. Affected and unaffected PINK1/PRKN monoallelic mutation carriers can be distinguished by heteroplasmic mitochondrial DNA variant load (area under the curve = 0.83, CI 0.74-0.93). Biallelic PINK1/PRKN mutation carriers harbour more heteroplasmic mitochondrial DNA variants in blood (P = 0.0006, Z = 3.63) compared to monoallelic mutation carriers. This enrichment was confirmed in induced pluripotent stem cell-derived (controls, n = 3; biallelic PRKN mutation carriers, n = 4) and post-mortem (control, n = 1; biallelic PRKN mutation carrier, n = 1) midbrain neurons. Last, the heteroplasmic mitochondrial DNA variant load correlated with IL6 levels in PINK1/PRKN mutation carriers (r = 0.57, P = 0.0074). PINK1/PRKN mutations predispose individuals to mitochondrial DNA variant accumulation in a dose- and disease-dependent manner.


Assuntos
DNA Mitocondrial , Doença de Parkinson , Humanos , DNA Mitocondrial/genética , Doença de Parkinson/genética , Heteroplasmia , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Mutação/genética
16.
Int J Geriatr Psychiatry ; 39(3): e6074, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38491809

RESUMO

OBJECTIVES: Neuropsychiatric symptoms (NPS) increase risk of developing dementia and are linked to various neurodegenerative conditions, including mild cognitive impairment (MCI due to Alzheimer's disease [AD]), cerebrovascular disease (CVD), and Parkinson's disease (PD). We explored the structural neural correlates of NPS cross-sectionally and longitudinally across various neurodegenerative diagnoses. METHODS: The study included individuals with MCI due to AD, (n = 74), CVD (n = 143), and PD (n = 137) at baseline, and at 2-years follow-up (MCI due to AD, n = 37, CVD n = 103, and PD n = 84). We assessed the severity of NPS using the Neuropsychiatric Inventory Questionnaire. For brain structure we included cortical thickness and subcortical volume of predefined regions of interest associated with corticolimbic and frontal-executive circuits. RESULTS: Cross-sectional analysis revealed significant negative correlations between appetite with both circuits in the MCI and CVD groups, while apathy was associated with these circuits in both the MCI and PD groups. Longitudinally, changes in apathy scores in the MCI group were negatively linked to the changes of the frontal-executive circuit. In the CVD group, changes in agitation and nighttime behavior were negatively associated with the corticolimbic and frontal-executive circuits, respectively. In the PD group, changes in disinhibition and apathy were positively associated with the corticolimbic and frontal-executive circuits, respectively. CONCLUSIONS: The observed correlations suggest that underlying pathological changes in the brain may contribute to alterations in neural activity associated with MBI. Notably, the difference between cross-sectional and longitudinal results indicates the necessity of conducting longitudinal studies for reproducible findings and drawing robust inferences.


Assuntos
Doença de Alzheimer , Transtornos Cerebrovasculares , Disfunção Cognitiva , Doença de Parkinson , Humanos , Estudos Transversais , Doença de Parkinson/psicologia , Estudos Longitudinais , Disfunção Cognitiva/psicologia , Doença de Alzheimer/psicologia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Transtornos Cerebrovasculares/complicações , Testes Neuropsicológicos
17.
Can J Neurol Sci ; : 1-9, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38532569

RESUMO

BACKGROUND: Mucolipidosis type IV (MLIV) is a rare, progressive lysosomal storage disorder characterized by severe intellectual disability, delayed motor milestones and ophthalmologic abnormalities. MLIV is an autosomal recessive disease caused by mutations in the MCOLN1 gene, encoding mucolipin-1 which is responsible for maintaining lysosomal function. OBJECTIVES AND METHODS: Here, we report a family of four Iranian siblings with cognitive decline, progressive visual and pyramidal disturbances, and abnormal movements manifested by severe oromandibular dystonia and parkinsonism. MRI scans of the brain demonstrated signal abnormalities in the white matter and thinning of the corpus callosum. RESULTS AND CONCLUSIONS: Whole-exome sequencing identified a novel homozygous variant, c.362C > T:p. Thr121Met in the MCOLN1 gene consistent with a diagnosis of MLIV. The presentation of MLIV may overlap with a variety of other neurological diseases, and genetic analysis is an important strategy to clarify the diagnosis. This is an important point that clinicians should be familiar with. The novel variant c.362C > T:p. Thr121Met herein described may be related to a comparatively older age at onset. Our study also expands the clinical spectrum of MLIV associated with the MCOLN1 variants and introduces a novel likely pathogenic variant for testing in MLIV cases that remain unresolved.

18.
Alzheimers Dement ; 20(4): 2968-2979, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38470007

RESUMO

INTRODUCTION: Apolipoprotein E E4 allele (APOE E4) and slow gait are independently associated with cognitive impairment and dementia. However, it is unknown whether their coexistence is associated with poorer cognitive performance and its underlying mechanism in neurodegenerative diseases. METHODS: Gait speed, APOE E4, cognition, and neuroimaging were assessed in 480 older adults with neurodegeneration. Participants were grouped by APOE E4 presence and slow gait. Mediation analyses were conducted to determine if brain structures could explain the link between these factors and cognitive performance. RESULTS: APOE E4 carriers with slow gait had the lowest global cognitive performance and smaller gray matter volumes compared to non-APOE E4 carriers with normal gait. Coexistence of APOE E4 and slow gait best predicted global and domain-specific poorer cognitive performances, mediated by smaller gray matter volume. DISCUSSION: Gait slowness in APOE E4 carriers with neurodegenerative diseases may indicate extensive gray matter changes associated with poor cognition. HIGHLIGHTS: APOE E4 and slow gait are risk factors for cognitive decline in neurodegenerative diseases. Slow gait and smaller gray matter volumes are associated, independently of APOE E4. Worse cognition in APOE E4 carriers with slow gait is explained by smaller GM volume. Gait slowness in APOE E4 carriers indicates poorer cognition-related brain changes.


Assuntos
Apolipoproteína E4 , Doenças Neurodegenerativas , Humanos , Idoso , Apolipoproteína E4/genética , Doenças Neurodegenerativas/genética , Genótipo , Cognição , Marcha , Apolipoproteínas E/genética
19.
Alzheimers Dement ; 20(3): 1753-1770, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38105605

RESUMO

INTRODUCTION: We investigated whether novel plasma biomarkers are associated with cognition, cognitive decline, and functional independence in activities of daily living across and within neurodegenerative diseases. METHODS: Glial fibrillary acidic protein (GFAP), neurofilament light chain (NfL), phosphorylated tau (p-tau)181 and amyloid beta (Aß)42/40 were measured using ultra-sensitive Simoa immunoassays in 44 healthy controls and 480 participants diagnosed with Alzheimer's disease/mild cognitive impairment (AD/MCI), Parkinson's disease (PD), frontotemporal dementia (FTD) spectrum disorders, or cerebrovascular disease (CVD). RESULTS: GFAP, NfL, and/or p-tau181 were elevated among all diseases compared to controls, and were broadly associated with worse baseline cognitive performance, greater cognitive decline, and/or lower functional independence. While GFAP, NfL, and p-tau181 were highly predictive across diseases, p-tau181 was more specific to the AD/MCI cohort. Sparse associations were found in the FTD and CVD cohorts and for Aß42/40 . DISCUSSION: GFAP, NfL, and p-tau181 are valuable predictors of cognition and function across common neurodegenerative diseases, and may be useful in specialized clinics and clinical trials.


Assuntos
Doença de Alzheimer , Doenças Cardiovasculares , Disfunção Cognitiva , Demência Frontotemporal , Doenças Neurodegenerativas , Humanos , Atividades Cotidianas , Peptídeos beta-Amiloides , Ontário , Cognição , Biomarcadores , Proteínas tau
20.
Int J Mol Sci ; 25(5)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38473923

RESUMO

Lewy body diseases (LBDs) feature α-synuclein (α-syn)-containing Lewy bodies, with misfolded α-syn potentially propagating as seeds. Using a seeding amplification assay, we previously reported distinct α-syn seeding in LBD cases based on the area under seeding curves. This study revealed that LBD cases showing different α-syn seeding kinetics have distinct proteomics profiles, emphasizing disruptions in mitochondria and lipid metabolism in high-seeder cases. Though the mechanisms underlying LBD development are intricate, the factors influencing α-syn seeding activity remain elusive. To address this and complement our previous findings, we conducted targeted transcriptome analyses in the substantia nigra using the nanoString nCounter assay together with histopathological evaluations in high (n = 4) and low (n = 3) nigral α-syn seeders. Neuropathological findings (particularly the substantia nigra) were consistent between these groups and were characterized by neocortical LBD associated with Alzheimer's disease neuropathologic change. Among the 1811 genes assessed, we identified the top 20 upregulated and downregulated genes and pathways in α-syn high seeders compared with low seeders. Notably, alterations were observed in genes and pathways related to transmembrane transporters, lipid metabolism, and the ubiquitin-proteasome system in the high α-syn seeders. In conclusion, our findings suggest that the molecular behavior of α-syn is the driving force in the neurodegenerative process affecting the substantia nigra through these identified pathways. These insights highlight their potential as therapeutic targets for attenuating LBD progression.


Assuntos
Doença por Corpos de Lewy , alfa-Sinucleína , Humanos , alfa-Sinucleína/metabolismo , Doença por Corpos de Lewy/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Metabolismo dos Lipídeos , Ubiquitinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA