Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
FASEB J ; 38(7): e23599, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38572590

RESUMO

Diabetic nephropathy (DN) is the leading cause of end-stage renal disease globally. Currently, there are no effective drugs for the treatment of DN. Although several studies have reported the therapeutic potential of mesenchymal stem cells, the underlying mechanisms remain largely unknown. Here, we report that both human umbilical cord MSCs (UC-MSCs) and UC-MSC-derived exosomes (UC-MSC-exo) attenuate kidney damage, and inhibit epithelial-mesenchymal transition (EMT) and renal fibrosis in streptozotocin-induced DN rats. Strikingly, the Hedgehog receptor, smoothened (SMO), was significantly upregulated in the kidney tissues of DN patients and rats, and positively correlated with EMT and renal fibrosis. UC-MSC and UC-MSC-exo treatment resulted in decrease of SMO expression. In vitro co-culture experiments revealed that UC-MSC-exo reduced EMT of tubular epithelial cells through inhibiting Hedgehog/SMO pathway. Collectively, UC-MSCs inhibit EMT and renal fibrosis by delivering exosomes and targeting Hedgehog/SMO signaling, suggesting that UC-MSCs and their exosomes are novel anti-fibrotic therapeutics for treating DN.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Exossomos , Células-Tronco Mesenquimais , Humanos , Ratos , Animais , Nefropatias Diabéticas/metabolismo , Exossomos/metabolismo , Receptor Smoothened , Proteínas Hedgehog/metabolismo , Fibrose , Células-Tronco Mesenquimais/metabolismo , Cordão Umbilical/metabolismo , Diabetes Mellitus/metabolismo
2.
Stem Cell Res Ther ; 15(1): 300, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39272156

RESUMO

BACKGROUND: Emerging evidence has highlighted the therapeutic potential of human umbilical cord mesenchymal stem cells (UC-MSCs) in chemotherapy-induced premature ovarian failure (POF). This study was designed to investigate the appropriate timing and molecular mechanism of UC-MSCs treatment for chemotherapy-induced POF. METHODS: Ovarian structure and function of mice were assessed every 3 days after injections with cyclophosphamide (CTX) and busulfan (BUS). UC-MSCs and UC-MSCs-derived extracellular vesicles (EVs) were infused into mice via the tail vein, respectively. Ovarian function was analyzed by follicle counts, the serum levels of hormones and ovarian morphology. The apoptosis and proliferation of ovarian granulosa cells were analyzed in vitro and in vivo. Label-free quantitative proteomics was used to detect the differentially expressed proteins in UC-MSC-derived EVs. RESULTS: After CTX/BUS injection, we observed that the ovarian function of POF mice was significantly deteriorated on day 9 after CTX/BUS infusion. TUNEL assay indicated that the number of apoptotic cells in the ovaries of POF mice was significantly higher than that in normal mice on day 3 after CTX/BUS injection. Transplantation of UC-MSCs on day 6 after CTX/BUS injection significantly improved ovarian function, enhanced proliferation and inhibited apoptosis of ovarian granulosa cells, whereas the therapeutic effect of UC-MSCs transplantation decreased on day 9, or day 12 after CTX/BUS injection. Moreover, EVs derived from UC-MSCs exerted similar therapeutic effects on POF. UC-MSCs-derived EVs could activate the PI3K/AKT signaling pathway and reduce ovarian granulosa cell apoptosis. Quantitative proteomics analysis revealed that clusterin (CLU) was highly expressed in the EVs of UC-MSCs. The supplementation of CLU proteins prevented ovarian granulosa cells from chemotherapy-induced apoptosis. Further mechanistic analysis showed that CLU-knockdown blocked the PI3K/AKT signaling and reversed the protective effects of UC-MSCs-derived EVs. CONCLUSIONS: Administration of UC-MSCs and UC-MSCs-derived EVs on day 6 of CTX/BUS injection could effectively improve the ovarian function of POF mice. UC-MSCs-derived EVs carrying CLU promoted proliferation and inhibited apoptosis of ovarian granulosa cells through activating the PI3K/AKT pathway. This study identifies a previously unrecognized molecular mechanism of UC-MSCs-mediated protective effects on POF, which pave the way for the use of cell-free therapeutic approach for POF.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , Fosfatidilinositol 3-Quinases , Insuficiência Ovariana Primária , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Cordão Umbilical , Feminino , Animais , Insuficiência Ovariana Primária/terapia , Insuficiência Ovariana Primária/metabolismo , Insuficiência Ovariana Primária/induzido quimicamente , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/transplante , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Camundongos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Cordão Umbilical/citologia , Clusterina/metabolismo , Apoptose , Transplante de Células-Tronco Mesenquimais/métodos , Ovário/metabolismo , Células da Granulosa/metabolismo , Proliferação de Células , Bussulfano/farmacologia
3.
Stem Cells Int ; 2023: 5584894, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37056456

RESUMO

Diabetic nephropathy (DN) is one of the microvascular complications of diabetes. Recent studies suggest that the pyroptosis of renal tubular epithelial cell plays a critical role in DN. Currently, effective therapeutic strategies to counteract and reverse the progression of DN are lacking. Mesenchymal stem cells (MSCs) represent an attractive therapeutic tool for tissue damage and inflammation owing to their unique immunomodulatory properties. However, the underlying mechanisms remain largely unknown. In the present study, we found that human umbilical cord MSCs (UC-MSCs) can effectively ameliorate kidney damage and reduce inflammation in DN rats. Importantly, UC-MSC treatment inhibits inflammasome-mediated pyroptosis in DN. Mechanistically, we performed RNA sequencing and identified that miR-342-3p was significantly downregulated in the kidneys of DN rats. Furthermore, we found that miR-342-3p was negatively correlated with renal injury and pyroptosis in DN rats. The expression of miR-342-3p was significantly increased after UC-MSC treatment. Moreover, miR-342-3p decreased the expression of Caspase1 by targeting its 3'-UTR, which was confirmed by double-luciferase assay. Using miRNA mimic transfection, we demonstrated that UC-MSC-derived miR-342-3p inhibited pyroptosis of renal tubular epithelial cells through targeting the NLRP3/Caspase1 pathway. These findings would provide a novel intervention strategy for the use of miRNA-modified cell therapy for kidney diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA