Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 2024 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-39481378

RESUMO

The autophagy-lysosome system directs the degradation of a wide variety of cargo and is also involved in tumor progression. Here, we show that the immunity-related GTPase family Q protein (IRGQ), an uncharacterized protein to date, acts in the quality control of major histocompatibility complex class I (MHC class I) molecules. IRGQ directs misfolded MHC class I toward lysosomal degradation through its binding mode to GABARAPL2 and LC3B. In the absence of IRGQ, free MHC class I heavy chains do not only accumulate in the cell but are also transported to the cell surface, thereby promoting an immune response. Mice and human patients suffering from hepatocellular carcinoma show improved survival rates with reduced IRGQ levels due to increased reactivity of CD8+ T cells toward IRGQ knockout tumor cells. Thus, we reveal IRGQ as a regulator of MHC class I quality control, mediating tumor immune evasion.

2.
Cell ; 186(24): 5411-5427.e23, 2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-37918396

RESUMO

Neurons build synaptic contacts using different protein combinations that define the specificity, function, and plasticity potential of synapses; however, the diversity of synaptic proteomes remains largely unexplored. We prepared synaptosomes from 7 different transgenic mouse lines with fluorescently labeled presynaptic terminals. Combining microdissection of 5 different brain regions with fluorescent-activated synaptosome sorting (FASS), we isolated and analyzed the proteomes of 18 different synapse types. We discovered ∼1,800 unique synapse-type-enriched proteins and allocated thousands of proteins to different types of synapses (https://syndive.org/). We identify shared synaptic protein modules and highlight the proteomic hotspots for synapse specialization. We reveal unique and common features of the striatal dopaminergic proteome and discover the proteome signatures that relate to the functional properties of different interneuron classes. This study provides a molecular systems-biology analysis of synapses and a framework to integrate proteomic information for synapse subtypes of interest with cellular or circuit-level experiments.


Assuntos
Encéfalo , Proteoma , Sinapses , Animais , Camundongos , Encéfalo/metabolismo , Camundongos Transgênicos , Proteoma/metabolismo , Proteômica , Sinapses/metabolismo , Sinaptossomos/metabolismo
3.
Cell ; 170(4): 693-700.e7, 2017 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-28802041

RESUMO

The TOM complex is the main entry gate for protein precursors from the cytosol into mitochondria. We have determined the structure of the TOM core complex by cryoelectron microscopy (cryo-EM). The complex is a 148 kDa symmetrical dimer of ten membrane protein subunits that create a shallow funnel on the cytoplasmic membrane surface. In the core of the dimer, the ß-barrels of the Tom40 pore form two identical preprotein conduits. Each Tom40 pore is surrounded by the transmembrane segments of the α-helical subunits Tom5, Tom6, and Tom7. Tom22, the central preprotein receptor, connects the two Tom40 pores at the dimer interface. Our structure offers detailed insights into the molecular architecture of the mitochondrial preprotein import machinery.


Assuntos
Proteínas de Transporte/química , Proteínas Fúngicas/química , Neurospora crassa/enzimologia , Sistemas de Translocação de Proteínas/química , Sequência de Aminoácidos , Proteínas de Transporte/genética , Proteínas de Transporte/ultraestrutura , Microscopia Crioeletrônica , Proteínas Fúngicas/genética , Proteínas Fúngicas/ultraestrutura , Espectrometria de Massas , Proteínas de Transporte da Membrana Mitocondrial/química , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas de Transporte da Membrana Mitocondrial/ultraestrutura , Membranas Mitocondriais/enzimologia , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Modelos Moleculares , Conformação Proteica em Folha beta , Sistemas de Translocação de Proteínas/genética , Sistemas de Translocação de Proteínas/ultraestrutura , Proteínas de Saccharomyces cerevisiae/química
4.
Nucleic Acids Res ; 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39377397

RESUMO

Developmental transcription factors act in networks, but how these networks achieve cell- and tissue specificity is still poorly understood. Here, we explored pre-B cell leukemia homeobox 1 (PBX1) in adult neurogenesis combining genomic, transcriptomic, and proteomic approaches. ChIP-seq analysis uncovered PBX1 binding to numerous genomic sites. Integration of PBX1 ChIP-seq with ATAC-seq data predicted interaction partners, which were subsequently validated by mass spectrometry. Whole transcriptome spatial RNA analysis revealed shared expression dynamics of Pbx1 and interacting factors. Among these were class I bHLH proteins TCF3 and TCF4. RNA-seq following Pbx1, Tcf3 or Tcf4 knockdown identified proliferation- and differentiation associated genes as shared targets, while sphere formation assays following knockdown argued for functional cooperativity of PBX1 and TCF3 in progenitor cell proliferation. Notably, while physiological PBX1-TCF interaction has not yet been described, chromosomal translocation resulting in genomic TCF3::PBX1 fusion characterizes a subtype of acute lymphoblastic leukemia. Introducing Pbx1 into Nalm6 cells, a pre-B cell line expressing TCF3 but lacking PBX1, upregulated the leukemogenic genes BLK and NOTCH3, arguing that functional PBX1-TCF cooperativity likely extends to hematopoiesis. Our study hence uncovers a transcriptional module orchestrating the balance between progenitor cell proliferation and differentiation in adult neurogenesis with potential implications for leukemia etiology.

5.
Nature ; 562(7727): 361-366, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30333578

RESUMO

Few animals provide a readout that is as objective of their perceptual state as camouflaging cephalopods. Their skin display system includes an extensive array of pigment cells (chromatophores), each expandable by radial muscles controlled by motor neurons. If one could track the individual expansion states of the chromatophores, one would obtain a quantitative description-and potentially even a neural description by proxy-of the perceptual state of the animal in real time. Here we present the use of computational and analytical methods to achieve this in behaving animals, quantifying the states of tens of thousands of chromatophores at sixty frames per second, at single-cell resolution, and over weeks. We infer a statistical hierarchy of motor control, reveal an underlying low-dimensional structure to pattern dynamics and uncover rules that govern the development of skin patterns. This approach provides an objective description of complex perceptual behaviour, and a powerful means to uncover the organizational principles that underlie the function, dynamics and morphogenesis of neural systems.


Assuntos
Mimetismo Biológico/fisiologia , Cromatóforos/fisiologia , Decapodiformes/fisiologia , Fenômenos Fisiológicos da Pele , Animais , Comportamento Animal , Cor , Decapodiformes/citologia , Modelos Biológicos , Neurônios Motores/fisiologia , Análise de Célula Única , Pele/citologia
6.
Proteomics ; 23(10): e2200138, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36790022

RESUMO

Chlorobaculum tepidum is an anaerobic green sulfur bacterium which oxidizes sulfide, elemental sulfur, and thiosulfate for photosynthetic growth. It can also oxidize sulfide to produce extracellular S0 globules, which can be further oxidized to sulfate and used as an electron donor. Here, we performed label-free quantitative proteomics on total cell lysates prepared from different metabolic states, including a sulfur production state (10 h post-incubation [PI]), the beginning of sulfur consumption (20 h PI), and the end of sulfur consumption (40 h PI), respectively. We observed an increased abundance of the sulfide:quinone oxidoreductase (Sqr) proteins in 10 h PI indicating a sulfur production state. The periplasmic thiosulfate-oxidizing Sox enzymes and the dissimilatory sulfite reductase (Dsr) subunits showed an increased abundance in 20 h PI, corresponding to the sulfur-consuming state. In addition, we found that the abundance of the heterodisulfide-reductase and the sulfhydrogenase operons was influenced by electron donor availability and may be associated with sulfur metabolism. Further, we isolated and analyzed the extracellular sulfur globules in the different metabolic states to study their morphology and the sulfur cluster composition, yielding 58 previously uncharacterized proteins in purified globules. Our results show that C. tepidum regulates the cellular levels of enzymes involved in sulfur metabolism in response to the availability of reduced sulfur compounds.


Assuntos
Chlorobi , Proteômica , Enxofre , Chlorobi/metabolismo , Oxirredução , Proteômica/métodos , Sulfetos/metabolismo , Enxofre/metabolismo , Tiossulfatos/metabolismo , Fotossíntese
7.
Anal Chem ; 95(32): 11892-11900, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37535005

RESUMO

Small proteins of around 50 aa in length have been largely overlooked in genetic and biochemical assays due to the inherent challenges with detecting and characterizing them. Recent discoveries of their critical roles in many biological processes have led to an increased recognition of the importance of small proteins for basic research and as potential new drug targets. One example is CcoM, a 36 aa subunit of the cbb3-type oxidase that plays an essential role in adaptation to oxygen-limited conditions in Pseudomonas stutzeri (P. stutzeri), a model for the clinically relevant, opportunistic pathogen Pseudomonas aeruginosa. However, as no comprehensive data were available in P. stutzeri, we devised an integrated, generic approach to study small proteins more systematically. Using the first complete genome as basis, we conducted bottom-up proteomics analyses and established a digest-free, direct-sequencing proteomics approach to study cells grown under aerobic and oxygen-limiting conditions. Finally, we also applied a proteogenomics pipeline to identify missed protein-coding genes. Overall, we identified 2921 known and 29 novel proteins, many of which were differentially regulated. Among 176 small proteins 16 were novel. Direct sequencing, featuring a specialized precursor acquisition scheme, exhibited advantages in the detection of small proteins with higher (up to 100%) sequence coverage and more spectral counts, including sequences with high proline content. Three novel small proteins, uniquely identified by direct sequencing and not conserved beyond P. stutzeri, were predicted to form an operon with a conserved protein and may represent de novo genes. These data demonstrate the power of this combined approach to study small proteins in P. stutzeri and show its potential for other prokaryotes.


Assuntos
Proteogenômica , Pseudomonas stutzeri , Pseudomonas stutzeri/genética , Proteômica , Pseudomonas aeruginosa/genética , Oxigênio
8.
Mol Cell Proteomics ; 20: 100016, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33556866

RESUMO

In all cells, proteins are continuously synthesized and degraded to maintain protein homeostasis and modify gene expression levels in response to stimuli. Collectively, the processes of protein synthesis and degradation are referred to as protein turnover. At a steady state, protein turnover is constant to maintain protein homeostasis, but in dynamic responses, proteins change their rates of synthesis and degradation to adjust their proteomes to internal or external stimuli. Thus, probing the kinetics and dynamics of protein turnover lends insight into how cells regulate essential processes such as growth, differentiation, and stress response. Here, we outline historical and current approaches to measuring the kinetics of protein turnover on a proteome-wide scale in both steady-state and dynamic systems, with an emphasis on metabolic tracing using stable isotope-labeled amino acids. We highlight important considerations for designing proteome turnover experiments, key biological findings regarding the conserved principles of proteome turnover regulation, and future perspectives for both technological and biological investigation.


Assuntos
Proteoma , Aminoácidos , Animais , Humanos , Marcação por Isótopo , Luz , Preparações Farmacêuticas , Proteômica , Radioisótopos
9.
J Bacteriol ; 204(1): e0035321, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34748388

RESUMO

Small proteins of up to ∼50 amino acids are an abundant class of biomolecules across all domains of life. Yet due to the challenges inherent in their size, they are often missed in genome annotations, and are difficult to identify and characterize using standard experimental approaches. Consequently, we still know few small proteins even in well-studied prokaryotic model organisms. Mass spectrometry (MS) has great potential for the discovery, validation, and functional characterization of small proteins. However, standard MS approaches are poorly suited to the identification of both known and novel small proteins due to limitations at each step of a typical proteomics workflow, i.e., sample preparation, protease digestion, liquid chromatography, MS data acquisition, and data analysis. Here, we outline the major MS-based workflows and bioinformatic pipelines used for small protein discovery and validation. Special emphasis is placed on highlighting the adjustments required to improve detection and data quality for small proteins. We discuss both the unbiased detection of small proteins and the targeted analysis of small proteins of interest. Finally, we provide guidelines to prioritize novel small proteins, and an outlook on methods with particular potential to further improve comprehensive discovery and characterization of small proteins.


Assuntos
Archaea/metabolismo , Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Espectrometria de Massas/métodos , Archaea/genética , Proteínas Arqueais/química , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Bactérias/genética , Proteínas de Bactérias/genética , Biologia Computacional , Regulação da Expressão Gênica em Archaea/fisiologia , Regulação Bacteriana da Expressão Gênica/fisiologia
10.
Proc Natl Acad Sci U S A ; 116(52): 26497-26504, 2019 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-31811022

RESUMO

The molybdenum storage protein (MoSto) deposits large amounts of molybdenum as polyoxomolybdate clusters in a heterohexameric (αß)3 cage-like protein complex under ATP consumption. Here, we suggest a unique mechanism for the ATP-powered molybdate pumping process based on X-ray crystallography, cryoelectron microscopy, hydrogen-deuterium exchange mass spectrometry, and mutational studies of MoSto from Azotobacter vinelandii. First, we show that molybdate, ATP, and Mg2+ consecutively bind into the open ATP-binding groove of the ß-subunit, which thereafter becomes tightly locked by fixing the previously disordered N-terminal arm of the α-subunit over the ß-ATP. Next, we propose a nucleophilic attack of molybdate onto the γ-phosphate of ß-ATP, analogous to the similar reaction of the structurally related UMP kinase. The formed instable phosphoric-molybdic anhydride becomes immediately hydrolyzed and, according to the current data, the released and accelerated molybdate is pressed through the cage wall, presumably by turning aside the Metß149 side chain. A structural comparison between MoSto and UMP kinase provides valuable insight into how an enzyme is converted into a molecular machine during evolution. The postulated direct conversion of chemical energy into kinetic energy via an activating molybdate kinase and an exothermic pyrophosphatase reaction to overcome a proteinous barrier represents a novelty in ATP-fueled biochemistry, because normally, ATP hydrolysis initiates large-scale conformational changes to drive a distant process.

11.
Proteomics ; 21(2): e2000003, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33108051

RESUMO

The degradation of aromatic compounds comprises an important step in the removal of pollutants and re-utilization of plastics and other non-biological polymers. Here, Pseudomonas sp. strain phDV1, a gram-negative bacterium that is selected for its ability to degrade aromatic compounds is studied. In order to understand how the aromatic compounds and their degradation products are reintroduced in the metabolism of the bacteria and the systematic/metabolic response of the bacterium to the new carbon source, the proteome of this strain is analyzed in the presence of succinate, phenol, and o-, m-, and p-cresol as the sole carbon source. As a reference proteome, the bacteria are grown in succinate and then compared with the respective proteomes of bacteria grown on phenol and different cresols. In total, 2295 proteins are identified; 1908 proteins are used for quantification between different growth conditions. The carbon source affects the synthesis of enzymes related to aromatic compound degradation and in particular the enzyme involved in the meta-pathway of monocyclic aromatic compounds degradation. In addition, proteins involved in the production of polyhydroxyalkanoate (PHA), an attractive biomaterial, show higher abundance in the presence of monocyclic aromatic compounds. The results provide, for the first time, comprehensive information on the proteome response of this strain to monocyclic aromatic compounds.


Assuntos
Proteômica , Pseudomonas , Proteínas de Bactérias , Biodegradação Ambiental , Fenol , Proteoma
12.
J Am Chem Soc ; 142(16): 7647-7654, 2020 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-32233470

RESUMO

Post-translational modifications of proteins are widespread in eukaryotes. To elucidate the functional role of these modifications, detection methods need to be developed that provide information at atomic resolution. Here, we report on the development of a novel Arg-specific NMR experiment that detects the methylation status and symmetry of each arginine side chain even in highly repetitive RGG amino acid sequence motifs found in numerous proteins within intrinsically disordered regions. The experiment relies on the excellent resolution of the backbone H,N correlation spectra even in these low complexity sequences. It requires 13C, 15N labeled samples.


Assuntos
Arginina/química , Espectroscopia de Ressonância Magnética/métodos , Proteínas/química , Humanos , Metilação
13.
Proc Natl Acad Sci U S A ; 114(44): 11691-11696, 2017 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-29078272

RESUMO

Na+/H+ antiporters comprise a family of membrane proteins evolutionarily conserved in all kingdoms of life and play an essential role in cellular ion homeostasis. The NhaA crystal structure of Escherichia coli has become the paradigm for this class of secondary active transporters. However, structural data are only available at low pH, where NhaA is inactive. Here, we adapted hydrogen/deuterium-exchange mass spectrometry (HDX-MS) to analyze conformational changes in NhaA upon Li+ binding at physiological pH. Our analysis revealed a global conformational change in NhaA with two sets of movements around an immobile binding site. Based on these results, we propose a model for the ion translocation mechanism that explains previously controversial data for this antiporter. Furthermore, these findings contribute to our understanding of related human transporters that have been linked to various diseases.


Assuntos
Medição da Troca de Deutério , Proteínas de Escherichia coli/química , Escherichia coli/metabolismo , Espectrometria de Massas/métodos , Trocadores de Sódio-Hidrogênio/química , Detergentes , Deutério/química , Proteínas de Escherichia coli/metabolismo , Ligantes , Lítio/química , Micelas , Modelos Moleculares , Conformação Proteica , Trocadores de Sódio-Hidrogênio/metabolismo
14.
Proteomics ; 19(14): e1900028, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31168896

RESUMO

Adaptation to the environment during development influences the life-long survival of an animal. While brain-wide proteomic changes are expected to underlie such experience-driven physiological and behavioral flexibility, a comprehensive overview of the nature and extent of the proteomic regulation following an environmental challenge during development is currently lacking. In this study, the brain proteome of larval zebrafish is identified and it is determined how it is altered by an exposure to a natural and physical environmental challenge, namely prolonged exposure to strong water currents. A comprehensive larval zebrafish brain proteome is presented here. Furthermore, 57 proteins that are regulated by the exposure to an environmental challenge are identified, which cover multiple functions including neuronal plasticity, the stress response, axonal growth and guidance, spatial learning, and energy metabolism. These represent candidate proteins that may play crucial roles for the adaption to an environmental challenge during development.


Assuntos
Encéfalo/metabolismo , Proteoma/metabolismo , Proteômica/métodos , Animais , Larva , Peixe-Zebra
15.
Proteomics ; 19(19): e1800332, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31430420

RESUMO

Cyanobacteria are oxygenic photosynthetic prokaryotes and play a crucial role in the Earth's carbon and nitrogen cycles. The photoautotrophic cyanobacterium Anabaena sp. PCC 7120 has the ability to fix atmospheric nitrogen in heterocysts and produce hydrogen as a byproduct through a nitrogenase. In order to improve hydrogen production, mutants from Anabaena sp. PCC 7120 are constructed by inactivation of the uptake hydrogenase (ΔhupL) and the bidirectional hydrogenase (ΔhoxH) in previous studies. Here the proteomic differences of enriched heterocysts between these mutants cultured in N2 -fixing conditions are investigated. Using a label-free quantitative proteomics approach, a total of 2728 proteins are identified and it is found that 79 proteins are differentially expressed in the ΔhupL and 117 proteins in the ΔhoxH variant. The results provide for the first time comprehensive information on proteome regulation of the uptake hydrogenase and the bidirectional hydrogenase, as well as systematic data on the hydrogen related metabolism in Anabaena sp. PCC 7120.


Assuntos
Anabaena/metabolismo , Proteínas de Bactérias/metabolismo , Hidrogenase/metabolismo , Proteoma/análise , Proteômica/métodos , Anabaena/citologia , Anabaena/genética , Proteínas de Bactérias/classificação , Proteínas de Bactérias/genética , Clorofila/metabolismo , Análise por Conglomerados , Hidrogenase/genética , Isoenzimas/genética , Isoenzimas/metabolismo , Mutação , Fixação de Nitrogênio
16.
Biochim Biophys Acta Bioenerg ; 1858(3): 231-238, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28007379

RESUMO

The Cbb3-type cytochrome c oxidases (Cbb3-CcOs), the second most abundant CcOs, catalyze the reduction of molecular oxygen to water, even at micromolar oxygen concentrations. In Pseudomonas stutzeri ZoBell, two tandemly organized cbb3-operons encode the isoforms Cbb3-1 and Cbb3-2 both possessing subunits CcoN, CcoO and CcoP. However, only the cbb3-2 operon contains an additional ccoQ gene. CcoQ consists of 62 amino acids and is predicted to possess one transmembrane spanning helix. The physiological role of CcoQ was investigated based on a CcoQ-deletion mutant and wild-type Cbb3-2 crystals not containing subunit CcoQ. Cbb3-2 isolated from the deletion mutant is inactive and appears as a dispersed band on blue native-PAGE gels. Surprisingly, in the absence of ccoQ, Cbb3-1 also shows a strongly reduced activity. Our data suggest that CcoQ primarily functions as an assembly factor for Cbb3-2 but is also required for correct assembly of Cbb3-1. In contrast, once correctly assembled, Cbb3-1 and Cbb3-2 possess a full enzymatic activity even in the absence of CcoQ.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Oxigênio/metabolismo , Subunidades Proteicas/metabolismo , Sequência de Aminoácidos/genética , Complexo IV da Cadeia de Transporte de Elétrons/química , Complexo IV da Cadeia de Transporte de Elétrons/genética , Dados de Sequência Molecular , Óperon/genética , Oxirredução , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Subunidades Proteicas/química , Subunidades Proteicas/genética , Pseudomonas stutzeri/enzimologia , Deleção de Sequência/genética
17.
Biochim Biophys Acta ; 1858(9): 2140-2144, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27342374

RESUMO

Methanogenic archaea share one ion gradient forming reaction in their energy metabolism catalyzed by the membrane-spanning multisubunit complex N(5)-methyl-tetrahydromethanopterin: coenzyme M methyltransferase (MtrABCDEFGH or simply Mtr). In this reaction the methyl group transfer from methyl-tetrahydromethanopterin to coenzyme M mediated by cobalamin is coupled with the vectorial translocation of Na(+) across the cytoplasmic membrane. No detailed structural and mechanistic data are reported about this process. In the present work we describe a procedure to provide a highly pure and homogenous Mtr complex on the basis of a selective removal of the only soluble subunit MtrH with the membrane perturbing agent dimethyl maleic anhydride and a subsequent two-step chromatographic purification. A molecular mass determination of the Mtr complex by laser induced liquid bead ion desorption mass spectrometry (LILBID-MS) and size exclusion chromatography coupled with multi-angle light scattering (SEC-MALS) resulted in a (MtrABCDEFG)3 heterotrimeric complex of ca. 430kDa with both techniques. Taking into account that the membrane protein complex contains various firmly bound small molecules, predominantly detergent molecules, the stoichiometry of the subunits is most likely 1:1. A schematic model for the subunit arrangement within the MtrABCDEFG protomer was deduced from the mass of Mtr subcomplexes obtained by harsh IR-laser LILBID-MS.


Assuntos
Proteínas Arqueais/química , Coenzimas/química , Proteínas de Membrana/química , Methanobacteriaceae/química , Metiltransferases/química , Pterinas/química , Proteínas Arqueais/metabolismo , Coenzimas/metabolismo , Espectrometria de Massas , Proteínas de Membrana/metabolismo , Methanobacteriaceae/metabolismo , Metiltransferases/metabolismo , Pterinas/metabolismo
18.
J Immunol ; 195(11): 5421-31, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26519528

RESUMO

Histone deacetylase (HDAC) inhibitors (HDACi) are clinically approved anticancer drugs that have important immune-modulatory properties. We report the surprising finding that HDACi promote LPS-induced IL-1ß processing and secretion in human and murine dendritic cells and murine macrophages. HDACi/LPS-induced IL-1ß maturation and secretion kinetics differed completely from those observed upon inflammasome activation. Moreover, this pathway of IL-1ß secretion was dependent on caspase-8 but was independent of the inflammasome components NACHT, LRR, and PYD domains-containing protein 3, apoptosis-associated speck-like protein containing a carboxyl-terminal caspase-recruitment domain, and caspase-1. Genetic studies excluded HDAC6 and HDAC10 as relevant HDAC targets in this pathway, whereas pharmacological inhibitor studies implicated the involvement of HDAC11. Treatment of mice with HDACi in a dextran sodium sulfate-induced colitis model resulted in a strong increase in intestinal IL-1ß, confirming that this pathway is also operative in vivo. Thus, in addition to the conventional inflammasome-dependent IL-1ß cleavage pathway, dendritic cells and macrophages are capable of generating, secreting, and processing bioactive IL-1ß by a novel, caspase-8-dependent mechanism. Given the widespread interest in the therapeutic targeting of IL-1ß, as well as the use of HDACi for anti-inflammatory applications, these findings have substantial clinical implications.


Assuntos
Caspase 8/imunologia , Células Dendríticas/imunologia , Inibidores de Histona Desacetilases/farmacologia , Interleucina-1beta/metabolismo , Macrófagos/imunologia , Animais , Células da Medula Óssea , Proteínas de Transporte , Caspase 1/genética , Caspase 1/imunologia , Inibidores de Caspase/farmacologia , Caspases/genética , Caspases Iniciadoras , Células Cultivadas , Colite/induzido quimicamente , Sulfato de Dextrana , Histona Desacetilases/imunologia , Inflamassomos/imunologia , Lipopolissacarídeos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR
19.
Graefes Arch Clin Exp Ophthalmol ; 255(11): 2081-2089, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28755165

RESUMO

PURPOSE: To assess treatment effects following intravitreal injection of ocriplasmin for vitreomacular traction (VMT), with or without full-thickness macular hole (FTMH), in real-life setting. METHODS: This is a monocentric, retrospective, consecutive series of 82 eyes from 82 patients who underwent ocriplasmin treatment between July 2013 and December 2016. We included 57 eyes with pure VMT, 17 eyes with small FTMHs, and eight eyes with medium FTMHs. Primary outcome measures were VMT release and MH closure rates. Secondary outcomes were visual acuity (VA), morphological changes, and subjective visual impairment after 1, 3, and 6 months and at last follow-up. RESULTS: After a median follow-up of 10 months, VMT release was achieved by pharmacologic vitreolysis in 57% of all eyes, whereas the macular hole closure rate was 32%. In those presenting with five or more positive prognostic factors (PPF), eyes with pure VMT showed nonsurgical traction release in 88%, and FTMHs were released in 93%, with a closure rate of 20%. Small FTMHs closed in 41% and medium FTMHs in 13%. The mean change in VA (LogMAR) was -0.07 ± 0.24 (median - 0.10) in all eyes. Subretinal fluid accumulation and ellipsoid zone changes were seen in 31% and 37% of all eyes, respectively. They were more frequent in eyes with traction release, but were self-limited. CONCLUSIONS: In a real-life setting, release of VMT by ocriplasmin injection can be achieved in the majority of eyes, relying on a strict patient selection. Closure of FTMHs rather correlates with hole diameter than with presence of PPF, and remains a rare finding in medium FTMHs.


Assuntos
Fibrinolisina/administração & dosagem , Fragmentos de Peptídeos/administração & dosagem , Perfurações Retinianas/terapia , Descolamento do Vítreo/tratamento farmacológico , Relação Dose-Resposta a Droga , Feminino , Humanos , Injeções Intravítreas , Masculino , Perfurações Retinianas/diagnóstico , Perfurações Retinianas/etiologia , Estudos Retrospectivos , Tomografia de Coerência Óptica , Resultado do Tratamento , Acuidade Visual , Vitrectomia/métodos , Descolamento do Vítreo/complicações , Descolamento do Vítreo/cirurgia
20.
J Biol Chem ; 290(11): 6994-7002, 2015 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-25593316

RESUMO

The ATP synthase of many archaea has the conserved sodium ion binding motif in its rotor subunit, implying that these A1AO-ATP synthases use Na(+) as coupling ion. However, this has never been experimentally verified with a purified system. To experimentally address the nature of the coupling ion, we have purified the A1AO-ATP synthase from T. onnurineus. It contains nine subunits that are functionally coupled. The enzyme hydrolyzed ATP, CTP, GTP, UTP, and ITP with nearly identical activities of around 40 units/mg of protein and was active over a wide pH range with maximal activity at pH 7. Noteworthy was the temperature profile. ATP hydrolysis was maximal at 80 °C and still retained an activity of 2.5 units/mg of protein at 45 °C. The high activity of the enzyme at 45 °C opened, for the first time, a way to directly measure ion transport in an A1AO-ATP synthase. Therefore, the enzyme was reconstituted into liposomes generated from Escherichia coli lipids. These proteoliposomes were still active at 45 °C and coupled ATP hydrolysis to primary and electrogenic Na(+) transport. This is the first proof of Na(+) transport by an A1AO-ATP synthase and these findings are discussed in light of the distribution of the sodium ion binding motif in archaea and the role of Na(+) in the bioenergetics of archaea.


Assuntos
ATPases Translocadoras de Prótons/metabolismo , Sódio/metabolismo , Thermococcus/enzimologia , Trifosfato de Adenosina/metabolismo , Hidrólise , Lipossomos/metabolismo , Subunidades Proteicas/isolamento & purificação , Subunidades Proteicas/metabolismo , ATPases Translocadoras de Prótons/isolamento & purificação , Thermococcus/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA