Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Mol Ecol ; 32(17): 4742-4762, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37430462

RESUMO

Environmental variation is increasingly recognized as an important driver of diversity in marine species despite the lack of physical barriers to dispersal and the presence of pelagic stages in many taxa. A robust understanding of the genomic and ecological processes involved in structuring populations is lacking for most marine species, often hindering management and conservation action. Cunner (Tautogolabrus adspersus) is a temperate reef fish with both pelagic early life-history stages and strong site-associated homing as adults; the species is also of interest for use as a cleaner fish in salmonid aquaculture in Atlantic Canada. We aimed to characterize genomic and geographic differentiation of cunner in the Northwest Atlantic. To achieve this, a chromosome-level genome assembly for cunner was produced and used to characterize spatial population structure throughout Atlantic Canada using whole-genome sequencing. The genome assembly spanned 0.72 Gbp and 24 chromosomes; whole-genome sequencing of 803 individuals from 20 locations from Newfoundland to New Jersey identified approximately 11 million genetic variants. Principal component analysis revealed four regional Atlantic Canadian groups. Pairwise FST and selection scans revealed signals of differentiation and selection at discrete genomic regions, including adjacent peaks on chromosome 10 across multiple pairwise comparisons (i.e. FST 0.5-0.75). Redundancy analysis suggested association of environmental variables related to benthic temperature and oxygen range with genomic structure. Results suggest regional scale diversity in this temperate reef fish and can directly inform the collection and translocation of cunner for aquaculture applications and the conservation of wild populations throughout the Northwest Atlantic.


Assuntos
Peixes , Perciformes , Animais , Canadá , Peixes/genética , Genoma/genética , Genômica
2.
Mol Phylogenet Evol ; 173: 107522, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35595008

RESUMO

In the framework of neutral theory of molecular evolution, genes specific to the development and function of eyes in subterranean animals living in permanent darkness are expected to evolve by relaxed selection, ultimately becoming pseudogenes. However, definitive empirical evidence for the role of neutral processes in the loss of vision over evolutionary time remains controversial. In previous studies, we characterized an assemblage of independently-evolved water beetle (Dytiscidae) species from a subterranean archipelago in Western Australia, where parallel vision and eye loss have occurred. Using a combination of transcriptomics and exon capture, we present evidence of parallel coding sequence decay, resulting from the accumulation of frameshift mutations and premature stop codons, in eight phototransduction genes (arrestins, opsins, ninaC and transient receptor potential channel genes) in 32 subterranean species in contrast to surface species, where these genes have open reading frames. Our results provide strong evidence to support neutral evolutionary processes as a major contributing factor to the loss of phototransduction genes in subterranean animals, with the ultimate fate being the irreversible loss of a light detection system.


Assuntos
Besouros , Animais , Besouros/genética , Evolução Molecular , Opsinas/genética , Filogenia , Água
3.
Immunogenetics ; 68(5): 381-9, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26894280

RESUMO

As the only native insular Newfoundland canid between the extinction of the wolf in the 1930s and the recent arrival of coyotes, the red fox (Vulpes vulpes deletrix Bangs 1898) poses interesting questions about genetic distinctiveness and the post-glacial colonization history of the island's depauperate mammalian fauna. Here, we characterized genetic variability at the major histocompatibility complex (MHC) class II DR ß1 domain (DRB1) locus in 28 red foxes from six sampling localities island-wide and compared it with mitochondrial control region (CR) diversity and DRB1 diversity in other canids. Our goals were to describe novel DRB1 alleles in a new canid population and to make inferences about the role of selection in maintaining their diversity. As in numerous studies of vertebrates, we found an order-of-magnitude higher nucleotide diversity at the DRB1 locus compared with the CR and significantly positive nonsynonymous-to-synonymous substitution ratios, indicative of selection in the distant past. Although the evidence is weaker, the Ewens-Watterson test of neutrality and the geographical distribution of variation compared with the CR suggest a role for selection over the evolutionary timescale of populations. We report the first genetic data from the DRB1 locus in the red fox and establish baseline information regarding immunogenetic variation in this island canid population which should inform continued investigations of population demography, adaptive genetic diversity, and wildlife disease in red foxes and related species.


Assuntos
Evolução Biológica , Variação Genética/genética , Genética Populacional , Cadeias HLA-DRB1/genética , Polimorfismo Genético/genética , Seleção Genética/genética , Alelos , Sequência de Aminoácidos , Animais , Sequência de Bases , Raposas , Ilhas , Repetições de Microssatélites , Terra Nova e Labrador , Filogenia
4.
Front Genet ; 15: 1402927, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39130751

RESUMO

Atlantic salmon (Salmo salar) is an important source of food globally; however, fillet color can significantly affect consumer purchasing, leading to potential food waste. Fish diets can be supplemented with astaxanthin to increase the organic pigment, carotenoid, responsible for flesh coloration; however, there is variation in the amount of overall fillet coloration in response to feeding astaxanthin. The uptake of this pigment is influenced by the environment and genetics and has been shown to be heritable. Therefore, we set out to determine the genomic associations of two separate year classes of farmed North American Atlantic salmon with measured Minolta Chroma Meter (lightness, redness, and yellowness) and SalmoFan phenotypic traits. Using ASReml-R genome-wide association, two genetic markers on chromosome 26 were significantly associated with almost all color traits, and these two markers explained between 6.0% and 12.5% of the variances. The genomic region on chromosome 26 was importantly found to be associated with the beta-carotene oxygenase 1 (bco1) gene, which is essential in the conversion of beta-carotenoids to vitamin A, implying that this gene may also play an important role in flesh coloration in North American Atlantic salmon. Additionally, there were several genomic regions significantly associated with color traits, in which the accompanying genes had functions in line with thermogenesis, immune function, and pathogenic responses. Understanding how environmental and genetic factors work together to affect fillet quality traits will help inform genetic improvement.

5.
Mol Ecol Resour ; 2023 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-37246351

RESUMO

The negative genetic impacts of gene flow from domestic to wild populations can be dependent on the degree of domestication and exacerbated by the magnitude of pre-existing genetic differences between wild populations and the domestication source. Recent evidence of European ancestry within North American aquaculture Atlantic salmon (Salmo salar) has elevated the potential impact of escaped farmed salmon on often at-risk wild North American salmon populations. Here, we compare the ability of single nucleotide polymorphism (SNP) and microsatellite (SSR) marker panels of different sizes (7-SSR, 100-SSR and 220K-SNP) to detect introgression of European genetic information into North American wild and aquaculture populations. Linear regression comparing admixture predictions for a set of individuals common to the three datasets showed that the 100-SSR panel and 7-SSR panels replicated the full 220K-SNP-based admixture estimates with low accuracy (r2 of .64 and .49, respectively). Additional tests explored the effects of individual sample size and marker number, which revealed that ~300 randomly selected SNPs could replicate the 220K-SNP admixture predictions with greater than 95% fidelity. We designed a custom SNP panel (301-SNP) for European admixture detection in future monitoring work and then developed and tested a python package, salmoneuadmix (https://github.com/CNuge/SalmonEuAdmix), which uses a deep neural network to make de novo estimates of individuals' European admixture proportion without the need to conduct complete admixture analysis utilizing baseline samples. The results demonstrate the mobilization of targeted SNP panels and machine learning in support of at-risk species conservation and management.

6.
Evol Appl ; 16(9): 1619-1636, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37752959

RESUMO

Lumpfish, Cyclopterus lumpus, have historically been harvested throughout Atlantic Canada and are increasingly in demand as a solution to controlling sea lice in Atlantic salmon farms-a process which involves both the domestication and the transfer of lumpfish between geographic regions. At present, little is known regarding population structure and diversity of wild lumpfish in Atlantic Canada, limiting attempts to assess the potential impacts of escaped lumpfish individuals from salmon pens on currently at-risk wild populations. Here, we characterize the spatial population structure and genomic-environmental associations of wild populations of lumpfish throughout the Northwest Atlantic using both 70K SNP array data and whole-genome re-sequencing data (WGS). At broad spatial scales, our results reveal a large environmentally associated genetic break between the southern populations (Gulf of Maine and Bay of Fundy) and northern populations (Newfoundland and the Gulf of St. Lawrence), linked to variation in ocean temperature and ice cover. At finer spatial scales, evidence of population structure was also evident in a distinct coastal group in Newfoundland and significant isolation by distance across the northern region. Both evidence of consistent environmental associations and elevated genome-wide variation in F ST values among these three regional groups supports their biological relevance. This study represents the first extensive description of population structure of lumpfish in Atlantic Canada, revealing evidence of broad and fine geographic scale environmentally associated genomic diversity. Our results will facilitate the commercial use of lumpfish as a cleaner fish in Atlantic salmon aquaculture, the identification of lumpfish escapees, and the delineation of conservation units of this at-risk species throughout Atlantic Canada.

7.
Mol Ecol Resour ; 22(4): 1427-1439, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34859595

RESUMO

Teleosts exhibit extensive diversity of sex determination (SD) systems and mechanisms, providing the opportunity to study the evolution of SD and sex chromosomes. Here we sequenced the genome of the common lumpfish (Cyclopterus lumpus Linnaeus), a species of increasing importance to aquaculture, and identified the SD region and master SD locus using a 70 K single nucleotide polymorphism array and tissue-specific expression data. The chromosome-level assembly identified 25 diploid chromosomes with a total size of 572.89 Mb, a scaffold N50 of 23.86 Mb and genome annotation-predicted 21,480 protein-coding genes. Genome-wide association analysis located a highly sex-associated region on chromosome 13, suggesting that anti-Müllerian hormone (AMH) is the putative SD factor. Linkage disequilibrium and heterozygosity across chromosome 13 support a proto-XX/XY system, with an absence of widespread chromosome divergence between sexes. We identified three copies of AMH in the lumpfish primary and alternate haplotype assemblies localized in the SD region. Comparison to sequences from other teleosts suggested a monophyletic relationship and conservation within the Cottioidei. One AMH copy showed similarity to AMH/AMHY in a related species and was also the only copy with expression in testis tissue, suggesting this copy may be the functional copy of AMH in lumpfish. The two other copies arranged in tandem inverted duplication were highly similar, suggesting a recent duplication event. This study provides a resource for the study of early sex chromosome evolution and novel genomic resources that benefits lumpfish conservation management and aquaculture.


Assuntos
Hormônio Antimülleriano , Perciformes , Animais , Hormônio Antimülleriano/genética , Aquicultura , Estudo de Associação Genômica Ampla , Masculino , Perciformes/genética , Cromossomos Sexuais
8.
Evolution ; 75(1): 166-175, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33219700

RESUMO

Most subterranean animals are assumed to have evolved from surface ancestors following colonization of a cave system; however, very few studies have raised the possibility of "subterranean speciation" in underground habitats (i.e., obligate cave-dwelling organisms [troglobionts] descended from troglobiotic ancestors). Numerous endemic subterranean diving beetle species from spatially discrete calcrete aquifers in Western Australia (stygobionts) have evolved independently from surface ancestors; however, several cases of sympatric sister species raise the possibility of subterranean speciation. We tested this hypothesis using vision (phototransduction) genes that are evolving under neutral processes in subterranean species and purifying selection in surface species. Using sequence data from 32 subterranean and five surface species in the genus Paroster (Dytiscidae), we identified deleterious mutations in long wavelength opsin (lwop), arrestin 1 (arr1), and arrestin 2 (arr2) shared by a sympatric sister-species triplet, arr1 shared by a sympatric sister-species pair, and lwop and arr2 shared among closely related species in adjacent calcrete aquifers. In all cases, a common ancestor possessed the function-altering mutations, implying they were already adapted to aphotic environments. Our study represents one of the first confirmed cases of subterranean speciation in cave insects. The assessment of genes undergoing pseudogenization provides a novel way of testing modes of speciation and the history of diversification in blind cave animals.


Assuntos
Besouros/genética , Deriva Genética , Especiação Genética , Proteínas de Insetos/genética , Visão Ocular/genética , Animais , Arrestinas/genética , Água Subterrânea , Opsinas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA