Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Phys Rev Lett ; 120(24): 247001, 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-29957008

RESUMO

We have observed the spatial distribution of magnetic flux in Nb, Cu/Nb, and Cu/Nb/Co thin films using muon-spin rotation. In an isolated 50-nm-thick Nb film, we find a weak flux expulsion (Meissner effect) which becomes significantly enhanced when adding an adjacent 40 nm layer of Cu. The added Cu layer exhibits a Meissner effect (due to induced superconducting pairs) and is at least as effective as the Nb to expel flux. These results are confirmed by theoretical calculations using the quasiclassical Green's function formalism. An unexpected further significant enhancement of the flux expulsion is observed when adding a thin (2.4 nm) ferromagnetic Co layer to the bottom side of the Nb. This observed cooperation between superconductivity and ferromagnetism, by an unknown mechanism, forms a key ingredient for developing superconducting spintronics.

2.
Phys Rev Lett ; 112(16): 167201, 2014 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-24815664

RESUMO

In the majority of magnetic systems the surface is required to order at the same temperature as the bulk. In the present Letter, we report a distinct and unexpected surface magnetic phase transition at a lower temperature than the Néel temperature. Employing grazing incidence x-ray resonant magnetic scattering, we have observed the near-surface behavior of uranium dioxide. UO2 is a noncollinear, triple-q, antiferromagnet with the U ions on a face-centered cubic lattice. Theoretical investigations establish that at the surface the energy increase-due to the lost bonds-is reduced when the spins near the surface rotate, gradually losing their component normal to the surface. At the surface the lowest-energy spin configuration has a double-q (planar) structure. With increasing temperature, thermal fluctuations saturate the in-plane crystal field anisotropy at the surface, leading to soft excitations that have ferromagnetic XY character and are decoupled from the bulk. The structure factor of a finite two-dimensional XY model fits the experimental data well for several orders of magnitude of the scattered intensity. Our results support a distinct magnetic transition at the surface in the Kosterlitz-Thouless universality class.

3.
Phys Rev Lett ; 109(3): 037203, 2012 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-22861890

RESUMO

Quenched disorder affects how nonequilibrium systems respond to driving. In the context of artificial spin ice, an athermal system comprised of geometrically frustrated classical Ising spins with a twofold degenerate ground state, we give experimental and numerical evidence of how such disorder washes out edge effects and provide an estimate of disorder strength in the experimental system. We prove analytically that a sequence of applied fields with fixed amplitude is unable to drive the system to its ground state from a saturated state. These results should be relevant for other systems where disorder does not change the nature of the ground state.

4.
Phys Rev Lett ; 105(25): 257204, 2010 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-21231622

RESUMO

We present an unreported magnetic configuration in epitaxial La(1-x) Sr(x) MnO3 (x ∼ 0.3) (LSMO) films grown on strontium titanate (STO). X-ray magnetic circular dichroism indicates that the remanent magnetic state of thick LSMO films is opposite to the direction of the applied magnetic field. Spectroscopic and scattering measurements reveal that the average Mn valence varies from mixed Mn(3+)/Mn(4+) to an enriched Mn3+ region near the STO interface, resulting in a compressive lattice along the a, b axis and a possible electronic reconstruction in the Mn e(g) orbital (d(3)z(2)-r(2). This reconstruction may provide a mechanism for coupling the Mn3+ moments antiferromagnetically along the surface normal direction, and in turn may lead to the observed reversed magnetic configuration.

5.
J Phys Condens Matter ; 32(18): 185702, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-31918418

RESUMO

This work is within the objective of understanding the effects caused to Fe-Cr alloys by fast Fe ion irradiation. As the penetration length of Fe ion is of the order of hundreds of nanometers, 70 nm Fe-5at%C and Fe-10at%Cr films were irradiated at room temperature with 490 keV Fe+ ions at increasing fluence corresponding to a maximum damage of 50 displacements per atom (dpa). In Fe-5at%Cr alloy the Cr solute concentration remains unaltered even after a damage of 50 dpa. In the 10at%Cr the Cr solute concentration is reduced, with the increase of damage, asymptotically to a value of 7.2 at%.

6.
Sci Rep ; 9(1): 6708, 2019 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-31040356

RESUMO

The magnetic reversal behavior of a ferromagnet (FM) coupled through an FeMn antiferromagnet (AF) to a pinned ferromagnet has been investigated by polarized neutron reflectivity measurements. With FeMn as the AF layer it is found that there exists 90° interlayer coupling through this layer and that this plays a key role in the transfer of the exchange bias (EB) effect from the FM/AF interface to the AF/pinned-FM interface. Combined with Monte Carlo simulations, we demonstrate that the competition between the interlayer coupling and the anisotropy of the AF layer results in a control of the EB effect which has potential for device applications.

7.
J Phys Condens Matter ; 29(5): 055801, 2017 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-27911887

RESUMO

We characterise the magnetic state of highly-textured, sputter deposited erbium for a film of thickness 6 nm. Using polarised neutron reflectometry it is found that the film has a high degree of magnetic disorder, and we present some evidence that the film's local magnetic state is consistent with bulk-like spiral magnetism. This, combined with complementary characterisation techniques, show that thin film erbium is a strong candidate material for incorporation into device structures.

8.
Sci Rep ; 7(1): 11774, 2017 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-28924173

RESUMO

Yttrium iron garnet has a very high Verdet constant, is transparent in the infrared and is an insulating ferrimagnet leading to its use in optical and magneto-optical applications. Its high Q-factor has been exploited to make resonators and filters in microwave devices, but it also has the lowest magnetic damping of any known material. In this article we describe the structural and magnetic properties of single crystal thin-film YIG where the temperature dependence of the magnetisation reveals a decrease in the low temperature region. In order to understand this complex material we bring a large number of structural and magnetic techniques to bear on the same samples. Through a comprehensive analysis we show that at the substrate -YIG interface, an interdiffusion zone of only 4-6 nm exists. Due to the interdiffusion of Y from the YIG and Gd from the substrate, an addition magnetic layer is formed at the interface whose properties are crucially important in samples with a thickness of YIG less than 200 nm.

9.
Structure ; 8(4): 349-62, 2000 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-10801489

RESUMO

BACKGROUND: Isocitrate lyase catalyses the first committed step of the carbon-conserving glyoxylate bypass, the Mg(2+)-dependent reversible cleavage of isocitrate into succinate and glyoxylate. This metabolic pathway is an inviting target for the control of a number of diseases, because the enzymes involved in this cycle have been identified in many pathogens including Mycobacterium leprae and Leishmania. RESULTS: As part of a programme of rational drug design the structure of the tetrameric Aspergillus nidulans isocitrate lyase and its complex with glyoxylate and a divalent cation have been solved to 2.8 A resolution using X-ray diffraction. Each subunit comprises two domains, one of which adopts a folding pattern highly reminiscent of the triose phosphate isomerase (TIM) barrel. A 'knot' between subunits observed in the three-dimensional structure, involving residues towards the C terminus, implies that tetramer assembly involves considerable flexibility in this part of the protein. CONCLUSIONS: Difference Fourier analysis together with the pattern of sequence conservation has led to the identification of both the glyoxylate and metal binding sites and implicates the C-terminal end of the TIM barrel as the active site, which is consistent with studies of other enzymes with this fold. Two disordered regions of the polypeptide chain lie close to the active site, one of which includes a critical cysteine residue suggesting that conformational rearrangements are essential for catalysis. Structural similarities between isocitrate lyase and both PEP mutase and enzymes belonging to the enolase superfamily suggest possible relationships in aspects of the mechanism.


Assuntos
Aspergillus nidulans/enzimologia , Isocitrato Liase/química , Isocitrato Liase/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X , Metais/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Fosfotransferases (Fosfomutases)/química , Conformação Proteica , Homologia de Sequência de Aminoácidos , Relação Estrutura-Atividade
10.
Sci Rep ; 6: 39021, 2016 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-27966662

RESUMO

We present a detailed structural and magnetic characterization of sputter deposited thin film erbium, determined by x-ray diffraction, transport measurements, magnetometry and neutron diffraction. This provides information on the onset and change of the magnetic state as a function of temperature and applied magnetic field. Many of the features of bulk material are reproduced. Also of interest is the identification of a conical magnetic state which repeats with a wavevector parallel to the c axis τc = 4/17 in units of the reciprocal lattice parameter c*, which is a state not observed in any other thin film or bulk measurements. The data from the various techniques are combined to construct magnetic field, temperature (H, T)-phase diagrams for the 200 nm-thick Er sample that serves as a foundation for future exploitation of this complex magnetic thin film system.

11.
Sci Rep ; 5: 17079, 2015 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-26602978

RESUMO

Tetragonal CuMnAs is an antiferromagnetic material with favourable properties for applications in spintronics. Using a combination of neutron diffraction and x-ray magnetic linear dichroism, we determine the spin axis and magnetic structure in tetragonal CuMnAs, and reveal the presence of an interfacial uniaxial magnetic anisotropy. From the temperature-dependence of the neutron diffraction intensities, the Néel temperature is shown to be (480 ± 5) K. Ab initio calculations indicate a weak anisotropy in the (ab) plane for bulk crystals, with a large anisotropy energy barrier between in-plane and perpendicular-to-plane directions.

12.
Phys Rev Lett ; 85(23): 4964-7, 2000 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-11102162

RESUMO

The in-plane correlation lengths and angular dispersion of magnetic domains in a transition metal multilayer have been studied using off-specular neutron reflectometry techniques. A theoretical framework considering both structural and magnetic disorder has been developed, quantitatively connecting the observed scattering to the in-plane correlation length and the dispersion of the local magnetization vector about the mean macroscopic direction. The antiferromagnetic domain structure is highly vertically correlated throughout the multilayer. We are easily able to relate the neutron determined magnetic domain dispersion to magnetization and magnetoresistance experiments.

13.
Vet Rec ; 135(4): 86-8, 1994 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-7975094

RESUMO

In an experiment to examine the use of anthelmintics to suppress the faecal egg output of Fasciola hepatica from sheep and reduce the prevalence of infection on a sheep farm with a history of chronic fasciolosis, triclabendazole was administered four times annually for three years. During the first year, treatments in April, June, August and October failed to reduce the prevalence. In the subsequent two years the first annual treatment was brought forward to January and February, and the prevalence was reduced by 74.6 and 69.7 per cent, respectively. The mean plasma gamma-glutamyl transpeptidase concentration of the flock was significantly reduced from 55.9 units/litre before the experiment to 40.9 and 38.3 units/litre. In the second and third years the packed cell volume increased from 0.29 litre/litre to 0.36 litre/litre and the percentage of infected Lymnaea truncatula decreased to zero.


Assuntos
Anti-Helmínticos/uso terapêutico , Benzimidazóis/uso terapêutico , Fasciolíase/veterinária , Doenças dos Ovinos/tratamento farmacológico , Animais , Esquema de Medicação/veterinária , Fasciolíase/diagnóstico , Fasciolíase/tratamento farmacológico , Feminino , Prevalência , Ovinos , Doenças dos Ovinos/diagnóstico , Doenças dos Ovinos/parasitologia , Triclabendazol
14.
Nat Commun ; 4: 2322, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23959149

RESUMO

Recent studies have demonstrated the potential of antiferromagnets as the active component in spintronic devices. This is in contrast to their current passive role as pinning layers in hard disk read heads and magnetic memories. Here we report the epitaxial growth of a new high-temperature antiferromagnetic material, tetragonal CuMnAs, which exhibits excellent crystal quality, chemical order and compatibility with existing semiconductor technologies. We demonstrate its growth on the III-V semiconductors GaAs and GaP, and show that the structure is also lattice matched to Si. Neutron diffraction shows collinear antiferromagnetic order with a high Néel temperature. Combined with our demonstration of room-temperature-exchange coupling in a CuMnAs/Fe bilayer, we conclude that tetragonal CuMnAs films are suitable candidate materials for antiferromagnetic spintronics.

15.
J Phys Condens Matter ; 24(2): 024210, 2012 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-22173240

RESUMO

We have studied the dependence on the domain wall structure of the spin-transfer torque current density threshold for the onset of wall motion in curved, Gd-doped Ni(80)Fe(20) nanowires with no artificial pinning potentials. For single vortex domain walls, for both 10% and 1% Gd-doping concentrations, the threshold current density is inversely proportional to the wire width and significantly lower compared to the threshold current density measured for transverse domain walls. On the other hand for high Gd concentrations and large wire widths, double vortex domain walls are formed which require an increase in the threshold current density compared to single vortex domain walls at the same wire width. We suggest that this is due to the coupling of the vortex cores, which are of opposite chirality, and hence will be acted on by opposing forces arising through the spin-transfer torque effect.

16.
J Phys Condens Matter ; 23(41): 416006, 2011 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-21959945

RESUMO

We report the structural and magnetic characterization of sputter deposited epitaxial Ho. We present room temperature characterization by atomic force microscopy and x-ray diffraction and temperature dependent characterization by x-ray diffraction and neutron diffraction. The data show the onset and change of the magnetic state as a function of temperature. Films of different thickness, exhibiting signs of differing epitaxially induced strain, tend towards specific spin-slip phases in the low temperature regime. The more highly strained thinnest films tend towards values with a longer magnetic wavelength.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA