Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Crit Rev Food Sci Nutr ; 63(15): 2598-2611, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34542350

RESUMO

One of the most significant challenges associated with postharvest apple deterioration is the blue mold caused by Penicillium expansum, which leads to considerable economic losses to apple production industries. Apple fruits are susceptible to mold infection owing to their high nutrient and water content, and current physical control methods can delay but cannot completely inhibit P. expansum growth. Biological control methods present promising alternatives; however, they are not always cost effective and have application restrictions. P. expansum infection not only enhances disease pathogenicity, but also inhibits the expression of host-related defense genes. The implementation of new ways to investigate and control P. expansum are expected with the advent of omics technology. Advances in these techniques, together with molecular biology approaches such as targeted gene deletion and whole genome sequencing, will lead to a better understanding of the P. expansum infectious machinery. Here, we review the progress of research on the blue mold disease caused by P. expansum in apples, including physiological and molecular infection mechanisms, as well as various methods to control this common plant pathogen.


Assuntos
Malus , Penicillium , Penicillium/metabolismo , Frutas , Plantas
2.
Foods ; 11(5)2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35267353

RESUMO

Gray mold decay is a widespread postharvest disease in tomato that results from infection by the pathogen Botrytis cinerea, leading to huge economic losses. The objective of this study was to select the most effective antagonistic yeast to control tomato gray mold from six potential biocontrol agents and to investigate the possible control mechanism. The results showed that the yeast Wickerhamomyces anomalus was the most effective in inhibiting B. cinerea among the six strains both in vivo and in vitro on tomato, with a colony diameter of 11 mm, a decay diameter of 20 mm, and the lowest decay incidence (53%)-values significantly smaller and lower than the values recorded for the control group and the other yeasts. The efficacy of the control depended on the increase in yeast concentration, and the decay incidence and lesion diameter were reduced to 31%, 28% and 7 mm, 6 mm, respectively, when treated with 1 × 108 and 1 × 109 cells/mL W. anomalus. In addition, W. anomalus was able to rapidly colonize and stably multiply in tomato, occupying the space to control pathogen infection. W. anomalus was also able to motivate the defense mechanism of tomato with stimulation of defense-related enzymes PPO, POD, APX, and SOD and promotion of the content of total phenols and flavonoid compounds. All these results suggest that W. anomalus exhibited exceptional ability to control gray mold in tomato.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA