Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Blood ; 123(19): 3007-15, 2014 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-24497534

RESUMO

The cell of origin and the tumor microenvironment's role remain elusive for the most common peripheral T-cell lymphomas (PTCLs). As macrophages promote the growth and survival of malignant T cells and are abundant constituents of the tumor microenvironment, their functional polarization was examined in T-cell lymphoproliferative disorders. Cytokines that are abundant within the tumor microenvironment, particularly interleukin (IL)-10, were observed to promote alternative macrophage polarization. Macrophage polarization was signal transducer and activator of transcription 3 dependent and was impaired by the Janus kinase inhibitor ruxolitinib. In conventional T cells, the production of T helper (Th)2-associated cytokines and IL-10, both of which promote alternative macrophage polarization, is regulated by the T-cell transcription factor GATA-binding protein 3 (GATA-3). Therefore, its role in the T-cell lymphomas was examined. GATA-3 expression was observed in 45% of PTCLs, not otherwise specified (PTCL, NOS) and was associated with distinct molecular features, including the production of Th2-associated cytokines. In addition, GATA-3 expression identified a subset of PTCL, NOS with distinct clinical features, including inferior progression-free and overall survival. Collectively, these data suggest that further understanding the cell of origin and lymphocyte ontogeny among the T-cell lymphomas may improve our understanding of the tumor microenvironment's pathogenic role in these aggressive lymphomas.


Assuntos
Fator de Transcrição GATA3/genética , Interleucina-10/genética , Linfoma de Células T Periférico/genética , Microambiente Tumoral/genética , Western Blotting , Linhagem Celular Tumoral , Citocinas/genética , Citocinas/metabolismo , Fator de Transcrição GATA3/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Imuno-Histoquímica , Interleucina-10/metabolismo , Estimativa de Kaplan-Meier , Linfoma de Células T Periférico/metabolismo , Linfoma de Células T Periférico/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/patologia , Nitrilas , Pirazóis/farmacologia , Pirimidinas , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Risco , Linfócitos T/metabolismo , Linfócitos T/patologia , Células Th2/metabolismo , Células Th2/patologia
2.
Adv Ther (Weinh) ; 4(8): 2100099, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34514086

RESUMO

The COVID-19 pandemic continues to be a severe threat to human health, especially due to current and emerging SARS-CoV-2 variants with potential to escape humoral immunity developed after vaccination or infection. The development of broadly neutralizing antibodies that engage evolutionarily conserved epitopes on coronavirus spike proteins represents a promising strategy to improve therapy and prophylaxis against SARS-CoV-2 and variants thereof. Herein, a facile multivalent engineering approach is employed to achieve large synergistic improvements in the neutralizing activity of a SARS-CoV-2 cross-reactive nanobody (VHH-72) initially generated against SARS-CoV. This synergy is epitope specific and is not observed for a second high-affinity nanobody against a non-conserved epitope in the receptor-binding domain. Importantly, a hexavalent VHH-72 nanobody retains binding to spike proteins from multiple highly transmissible SARS-CoV-2 variants (B.1.1.7 and B.1.351) and potently neutralizes them. Multivalent VHH-72 nanobodies also display drug-like biophysical properties, including high stability, high solubility, and low levels of non-specific binding. The unique neutralizing and biophysical properties of VHH-72 multivalent nanobodies make them attractive as therapeutics against SARS-CoV-2 variants.

3.
Sci Rep ; 11(1): 20738, 2021 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-34671080

RESUMO

Monoclonal antibodies that target SARS-CoV-2 with high affinity are valuable for a wide range of biomedical applications involving novel coronavirus disease (COVID-19) diagnosis, treatment, and prophylactic intervention. Strategies for the rapid and reliable isolation of these antibodies, especially potent neutralizing antibodies, are critical toward improved COVID-19 response and informed future response to emergent infectious diseases. In this study, single B cell screening was used to interrogate antibody repertoires of immunized mice and isolate antigen-specific IgG1+ memory B cells. Using these methods, high-affinity, potent neutralizing antibodies were identified that target the receptor-binding domain of SARS-CoV-2. Further engineering of the identified molecules to increase valency resulted in enhanced neutralizing activity. Mechanistic investigation revealed that these antibodies compete with ACE2 for binding to the receptor-binding domain of SARS-CoV-2. These antibodies may warrant further development for urgent COVID-19 applications. Overall, these results highlight the potential of single B cell screening for the rapid and reliable identification of high-affinity, potent neutralizing antibodies for infectious disease applications.


Assuntos
Anticorpos Neutralizantes/química , Linfócitos B/virologia , COVID-19/sangue , COVID-19/imunologia , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/imunologia , Linfócitos B/imunologia , Sítios de Ligação/imunologia , Produtos Biológicos , Feminino , Células HEK293 , Humanos , Imunoglobulina G/imunologia , Imunoglobulina G/metabolismo , Memória Imunológica , Camundongos , Camundongos Endogâmicos BALB C , Ligação Proteica , Glicoproteína da Espícula de Coronavírus , Vacinas
4.
Cell Chem Biol ; 28(9): 1379-1388.e7, 2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34171229

RESUMO

There is widespread interest in facile methods for generating potent neutralizing antibodies, nanobodies, and other affinity proteins against SARS-CoV-2 and related viruses to address current and future pandemics. While isolating antibodies from animals and humans are proven approaches, these methods are limited to the affinities, specificities, and functional activities of antibodies generated by the immune system. Here we report a surprisingly simple directed evolution method for generating nanobodies with high affinities and neutralization activities against SARS-CoV-2. We demonstrate that complementarity-determining region swapping between low-affinity lead nanobodies, which we discovered unintentionally but find is simple to implement systematically, results in matured nanobodies with unusually large increases in affinity. Importantly, the matured nanobodies potently neutralize both SARS-CoV-2 pseudovirus and live virus, and possess drug-like biophysical properties. We expect that our methods will improve in vitro nanobody discovery and accelerate the generation of potent neutralizing nanobodies against diverse coronaviruses.


Assuntos
Anticorpos Neutralizantes/genética , Regiões Determinantes de Complementaridade/genética , Anticorpos de Domínio Único/genética , Animais , Anticorpos Neutralizantes/química , Chlorocebus aethiops , Epitopos , Células HEK293 , Humanos , Mutagênese , SARS-CoV-2 , Saccharomyces cerevisiae , Anticorpos de Domínio Único/química , Glicoproteína da Espícula de Coronavírus/química , Células Vero
5.
JCI Insight ; 6(5)2021 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-33497367

RESUMO

Limitations of checkpoint inhibitor cancer immunotherapy include induction of autoimmune syndromes and resistance of many cancers. Since CD318, a novel CD6 ligand, is associated with the aggressiveness and metastatic potential of human cancers, we tested the effect of an anti-CD6 monoclonal antibody, UMCD6, on killing of cancer cells by human lymphocytes. UMCD6 augmented killing of breast, lung, and prostate cancer cells through direct effects on both CD8+ T cells and NK cells, increasing cancer cell death and lowering cancer cell survival in vitro more robustly than monoclonal antibody checkpoint inhibitors that interrupt the programmed cell death 1 (PD-1)/PD-1 ligand 1 (PD-L1) axis. UMCD6 also augmented in vivo killing by human peripheral blood lymphocytes of a human breast cancer line xenotransplanted into immunodeficient mice. Mechanistically, UMCD6 upregulated the expression of the activating receptor NKG2D and downregulated expression of the inhibitory receptor NKG2A on both NK cells and CD8+ T cells, with concurrent increases in perforin and granzyme B production. The combined capability of an anti-CD6 monoclonal antibody to control autoimmunity through effects on CD4+ lymphocyte differentiation while enhancing killing of cancer cells through distinct effects on CD8+ and NK cells opens a potential new approach to cancer immunotherapy that would suppress rather than instigate autoimmunity.


Assuntos
Antígenos CD/imunologia , Antígenos de Diferenciação de Linfócitos T/imunologia , Linfócitos T CD8-Positivos/imunologia , Imunoterapia/métodos , Células Matadoras Naturais/imunologia , Neoplasias/terapia , Animais , Linfócitos T CD8-Positivos/citologia , Linhagem Celular Tumoral , Humanos , Células Matadoras Naturais/citologia , Camundongos , Camundongos SCID
6.
JCI Insight ; 6(9)2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33769311

RESUMO

Abs that neutralize SARS-CoV-2 are thought to provide the most immediate and effective treatment for those severely afflicted by this virus. Because coronavirus potentially diversifies by mutation, broadly neutralizing Abs are especially sought. Here, we report a possibly novel approach to rapid generation of potent broadly neutralizing human anti-SARS-CoV-2 Abs. We isolated SARS-CoV-2 spike protein-specific memory B cells by panning from the blood of convalescent subjects after infection with SARS-CoV-2 and sequenced and expressed Ig genes from individual B cells as human mAbs. All of 43 human mAbs generated in this way neutralized SARS-CoV-2. Eighteen of the forty-three human mAbs exhibited half-maximal inhibitory concentrations (IC50) of 6.7 × 10-12 M to 6.7 × 10-15 M for spike-pseudotyped virus. Seven of the human mAbs also neutralized (with IC50 < 6.7 × 10-12 M) viruses pseudotyped with mutant spike proteins (including receptor-binding domain mutants and the S1 C-terminal D614G mutant). Neutralization of the Wuhan Hu-1 founder strain and of some variants decreased when coding sequences were reverted to germline, suggesting that potency of neutralization was acquired by somatic hypermutation and selection of B cells. These results indicate that infection with SARS-CoV-2 evokes high-affinity B cell responses, some products of which are broadly neutralizing and others highly strain specific. We also identify variants that would potentially resist immunity evoked by infection with the Wuhan Hu-1 founder strain or by vaccines developed with products of that strain, suggesting evolutionary courses that SARS-CoV-2 could take.


Assuntos
Anticorpos Neutralizantes/genética , Anticorpos Antivirais/genética , COVID-19/imunologia , SARS-CoV-2/imunologia , Adulto , Idoso , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/imunologia , Especificidade de Anticorpos , Linfócitos B/imunologia , Anticorpos Amplamente Neutralizantes/genética , COVID-19/terapia , COVID-19/virologia , Humanos , Cadeias Pesadas de Imunoglobulinas/genética , Região Variável de Imunoglobulina/genética , Memória Imunológica , Pessoa de Meia-Idade , Testes de Neutralização , Pandemias , SARS-CoV-2/genética , Hipermutação Somática de Imunoglobulina , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia
7.
MethodsX ; 7: 100759, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32021819

RESUMO

PCR is a powerful tool for generating specific fragments of DNA that can be used to create gene variations or tagged expression constructs. Overlap extension PCR is a valuable technique that is commonly used for cloning large complex fragments, making edits to cloned genes or fusing two gene elements together. After difficulties in utilizing this technique following existing methods, we developed an optimized protocol. To accomplish this, three significant changes were made; 1) touchdown PCR cycling parameters were used to eliminate the need for optimizing PCR cycling conditions, 2) the high-fidelity, high-processivity Q5 DNA polymerase was used to improve full-length amplification quality, and 3) a reduced amount of primer in the final PCR amplification step decreased non-specific amplimers. This modified protocol results in consistent generation of gene fusion products, with little to no background and enhanced efficiency of the transgene construction process.

8.
Genes (Basel) ; 11(3)2020 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-32164255

RESUMO

Genetic engineering is the use of molecular biology technology to modify DNA sequence(s) in genomes, using a variety of approaches. For example, homologous recombination can be used to target specific sequences in mouse embryonic stem (ES) cell genomes or other cultured cells, but it is cumbersome, poorly efficient, and relies on drug positive/negative selection in cell culture for success. Other routinely applied methods include random integration of DNA after direct transfection (microinjection), transposon-mediated DNA insertion, or DNA insertion mediated by viral vectors for the production of transgenic mice and rats. Random integration of DNA occurs more frequently than homologous recombination, but has numerous drawbacks, despite its efficiency. The most elegant and effective method is technology based on guided endonucleases, because these can target specific DNA sequences. Since the advent of clustered regularly interspaced short palindromic repeats or CRISPR/Cas9 technology, endonuclease-mediated gene targeting has become the most widely applied method to engineer genomes, supplanting the use of zinc finger nucleases, transcription activator-like effector nucleases, and meganucleases. Future improvements in CRISPR/Cas9 gene editing may be achieved by increasing the efficiency of homology-directed repair. Here, we describe principles of genetic engineering and detail: (1) how common elements of current technologies include the need for a chromosome break to occur, (2) the use of specific and sensitive genotyping assays to detect altered genomes, and (3) delivery modalities that impact characterization of gene modifications. In summary, while some principles of genetic engineering remain steadfast, others change as technologies are ever-evolving and continue to revolutionize research in many fields.


Assuntos
Engenharia Genética/métodos , Animais , Sistemas CRISPR-Cas , Marcação de Genes/métodos , Técnicas de Transferência de Genes , Engenharia Genética/normas , Engenharia Genética/tendências , Humanos
9.
MethodsX ; 7: 100800, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32021830

RESUMO

Adenovirus-associated virus is a powerful vector system for transducing cells in vivo. It is widely used in animal systems due to high transduction efficiency of non-dividing cells with more than a dozen serotypes that have preferential tissue tropism. The viral genome remains episomal in the nucleus but maintains sustained expression in terminally differentiated cells for several weeks to months. Despite the popularity of recombinant AAV (rAAV) vectors, quality control testing of the virus after production is largely limited to physical characteristics such as viral genomes/ml determinations and silver staining acrylamide gels to determine purity. Functional testing, in vivo, is not practical due to high cost and restricted access of animal care and long duration of the assay (2-3 weeks). Some functional testing can be accomplished in cultured cells such as HEK293 cells, but HEK293 cells limit the types of rAAV constructs that can be tested. Many rAAV constructs are designed to study neurons in the brain with neural-specific promoters and many are floxed with loxp sites to be "activated" only in Cre-expressing neurons in transgenic animals. To develop a reporter cell line for rapid rAAV quality control assessment of these neural-specific, floxed rAAV constructs, we used the lentiviral system to stably express Cre recombinase in the SH-SY5Y neuroblastoma cell line. •A simple and economic method to evaluate recombinant AAV in vitro.•Allows functional validation of rAAV across a wide range of serotypes and promoters.•Allows functional validation of Cre-dependent rAAV constructs.

10.
J Biol Methods ; 7(2): e133, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32577423

RESUMO

Cancer immunotherapy is a rapidly advancing and viable approach to treating cancer along with more traditional forms of therapy. Real-time cell analysis technologies that examine the dynamic interactions between cancer cells and the cells of the immune system are becoming more important for assessment of novel therapeutics. In this report, we use the IncuCyte® imaging system to study the killing potential of various immune cells on cancer cell lines. The IncuCyte® system tracks living cells, labeled by a red fluorescent protein, and cell death, as indicated by the caspase-3/7 reagent, which generates a green fluorescent signal upon activation of apoptotic pathways. Despite the power of this approach, obtaining commercially fluorescent cancer cell lines is expensive and limited in the range of cell lines that are available. To overcome this barrier, we developed an inexpensive method using a lentiviral construct expressing nuclear localized mKate2 red fluorescent protein to stably label cancer cells. We demonstrate that this method is effective in labeling a wide variety of cell lines, allowing for analyses of different cancers as well as different cell lines of the same type of cancer.

11.
Arthritis Rheumatol ; 71(8): 1241-1251, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30861322

RESUMO

OBJECTIVE: To explore the intrinsic role of inhibitor of DNA binding 1 (ID-1) in rheumatoid arthritis (RA) fibroblast-like synoviocytes (FLS) and to investigate whether ID-1 is citrullinated and autoantigenic in RA. METHODS: RA patient serum ID-1 levels were measured before and after infliximab treatment. RA FLS were transfected with a clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 construct targeting ID-1 to examine the effects of ID-1 deletion. RA synovial fluid (SF) and homogenized synovial tissue (ST) were immunoprecipitated for ID-1 and measured for citrullinated residues using an enzyme-linked immunosorbent assay and Western blotting. Liquid chromatography tandem mass spectrometry (LC-MS/MS) was performed on in vitro-citrullinated recombinant human ID-1 (cit-ID-1) to localize the sites of citrullination. Normal and RA sera and SF were analyzed by immunodot blotting for anti-citrullinated protein antibodies (ACPAs) to cit-ID-1. RESULTS: RA patient serum ID-1 levels positively correlated with several disease parameters and were reduced after infliximab treatment. RA FLS displayed reduced growth and a robust increase in interleukin-6 (IL-6) and IL-8 production upon deletion of ID-1. ID-1 immunodepletion significantly reduced the levels of citrullinated residues in RA SF, and citrullinated ID-1 was detected in homogenized RA ST (n = 5 samples; P < 0.05). Immunodot blot analyses revealed ACPAs to cit-ID-1 but not to native ID-1, in RA peripheral blood (PB) sera (n = 30 samples; P < 0.001) and SF (n = 18 samples; P < 0.05) but not in normal PB sera. Following analyses of LC-MS/MS results for citrullination sites and corresponding reactivity in immunodot assays, we determined the critical arginines in ID-1 for autoantigenicity: R33, R52, and R121. CONCLUSION: Novel roles of ID-1 in RA include regulation of FLS proliferation and cytokine secretion as well as autoantigenicity following citrullination.


Assuntos
Anticorpos Antiproteína Citrulinada/imunologia , Artrite Reumatoide/imunologia , Autoantígenos/imunologia , Citrulinação/imunologia , Proteína 1 Inibidora de Diferenciação/imunologia , Adulto , Idoso , Anticorpos Antiproteína Citrulinada/sangue , Antirreumáticos/uso terapêutico , Artrite Reumatoide/sangue , Artrite Reumatoide/tratamento farmacológico , Autoantígenos/sangue , Proliferação de Células , Citocinas/sangue , Feminino , Humanos , Infliximab/uso terapêutico , Proteína 1 Inibidora de Diferenciação/sangue , Masculino , Pessoa de Meia-Idade , Líquido Sinovial/metabolismo , Membrana Sinovial/metabolismo , Sinoviócitos/imunologia , Adulto Jovem
12.
FASEB J ; 17(14): 2048-60, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14597674

RESUMO

Connector enhancer of KSR (CNK) is a multidomain protein that participates in Ras signaling in Drosophila eye development. In this report we identify the human homologue of CNK, termed CNK2A, and a truncated alternatively spliced variant, CNK2B. We characterize CNK2 phosphorylation, membrane localization, and interaction with Ras effector molecules. Our results show that MAPK signaling appears to play a role in the phosphorylation of CNK2 in vivo. CNK2 is found in both membrane and cytoplasmic fractions of the cell. In MDCK cells, full-length CNK2 is localized to the lateral plasma membrane. Consistent with previous reports, we show CNK2 interacts with Raf. CNK2 interaction was mapped to the regulatory and kinase domains of Raf, as well as to the carboxyl-terminal half of CNK2. CNK2 also interacts with the Ral signaling components, Ral GTPase, and the RalGDS family member Rlf. CNK2 interaction was mapped to the GEF domain of Rlf. The ability of CNK2 to interact with both Ras effector proteins Raf and Rlf suggests that CNK2 may integrate signals between MAPK and Ral pathways through a complex interplay of components.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteínas de Transporte/metabolismo , Proteínas de Drosophila , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Sistema de Sinalização das MAP Quinases , Proteínas de Membrana/metabolismo , Proteínas Proto-Oncogênicas c-raf/metabolismo , Fatores de Transcrição , Sequência de Aminoácidos , Animais , Proteínas de Transporte/química , Proteínas de Transporte/fisiologia , Linhagem Celular , Polaridade Celular , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/fisiologia , Dados de Sequência Molecular , Fosforilação , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Homologia de Sequência de Aminoácidos , Proteínas ral de Ligação ao GTP/metabolismo
13.
Mol Pharm ; 4(1): 95-103, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17274667

RESUMO

Bile acids conjugated to oligoarginine-containing peptides (BACs) form complexes with DNA based on the electrostatic interactions between negatively charged phosphate groups of the nucleic acid and the positively charged side chain guanidinium groups of the oligoarginine in the BACs. Charge neutralization of both components and subsequent increases of the net positive charge of the complex combined with the water-soluble lipophilic nature of the bile acid results in changes in the physicochemistry and biological properties of the complexes. We have examined the relationship of a series of 13 BACs on their interaction with circular plasmid DNA (pDNA). The formation of soluble, low-density and insoluble, high-density complexes was analyzed using several methods. The formation of high-density complexes was dependent on the DNA concentration, and was enhanced by increasing the BAC to pDNA charge ratio. Several of the BAC:pDNA complexes demonstrated exclusion of the DNA-intercalator Hoechst 33258 from pDNA, and were also protected from DNase activity. Several BAC conjugates interacted with pDNA to form nanometer-sized particles suitable for cell transfection in vitro. Five of the 13 BACs were transfection competent as single agents, and 11 of the 13 BACs showed enhancement of transfection in combination with DOPE containing liposomes or silica nanoparticles.


Assuntos
Ácidos e Sais Biliares/metabolismo , DNA Circular/metabolismo , Oligopeptídeos/metabolismo , Transfecção/métodos , Sequência de Aminoácidos , Animais , Ácidos e Sais Biliares/química , Bisbenzimidazol/metabolismo , DNA Circular/ultraestrutura , Desoxirribonucleases/metabolismo , Corantes Fluorescentes/metabolismo , Humanos , Lipossomos/metabolismo , Camundongos , Micelas , Microscopia Eletrônica de Transmissão , Dados de Sequência Molecular , Células NIH 3T3 , Nanopartículas , Nefelometria e Turbidimetria , Oligopeptídeos/síntese química , Oligopeptídeos/química , Tamanho da Partícula , Plasmídeos/metabolismo , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA