Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Int J Mol Sci ; 21(7)2020 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-32244428

RESUMO

Terminal drought is the main stress limiting pea (Pisum sativum L.) grain yield in Mediterranean environments. This study aimed to investigate genotype × environment (GE) interaction patterns, define a genomic selection (GS) model for yield under severe drought based on single nucleotide polymorphism (SNP) markers from genotyping-by-sequencing, and compare GS with phenotypic selection (PS) and marker-assisted selection (MAS). Some 288 lines belonging to three connected RIL populations were evaluated in a managed-stress (MS) environment of Northern Italy, Marchouch (Morocco), and Alger (Algeria). Intra-environment, cross-environment, and cross-population predictive ability were assessed by Ridge Regression best linear unbiased prediction (rrBLUP) and Bayesian Lasso models. GE interaction was particularly large across moderate-stress and severe-stress environments. In proof-of-concept experiments performed in a MS environment, GS models constructed from MS environment and Marchouch data applied to independent material separated top-performing lines from mid- and bottom-performing ones, and produced actual yield gains similar to PS. The latter result would imply somewhat greater GS efficiency when considering same selection costs, in partial agreement with predicted efficiency results. GS, which exploited drought escape and intrinsic drought tolerance, exhibited 18% greater selection efficiency than MAS (albeit with non-significant difference between selections) and moderate to high cross-population predictive ability. GS can be cost-efficient to raise yields under severe drought.


Assuntos
Secas , Grão Comestível/genética , Genoma de Planta , Pisum sativum/genética , Seleção Genética , Aclimatação/genética , Aclimatação/fisiologia , Argélia , Teorema de Bayes , Genótipo , Itália , Marrocos , Fenótipo , Polimorfismo de Nucleotídeo Único , Estresse Fisiológico
2.
Plant Pathol J ; 39(2): 171-180, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37019827

RESUMO

Spring black stem and leaf spot, caused by Phoma medicaginis, is an issue in annual Medicago species. Therefore, in this study, we analyzed the response to P. medicaginis infection in a collection of 46 lines of three annual Medicago species (M. truncatula, M. ciliaris, and M. polymorpha) showing different geographic distribution in Tunisia. The reaction in the host to the disease is explained by the effects based on plant species, lines nested within species, treatment, the interaction of species × treatment, and the interaction of lines nested within species × treatment. Medicago ciliaris was the least affected for aerial growth under infection. Furthermore, the largest variation within species was found for M. truncatula under both conditions. Principal component analysis and hierarchical classification showed that M. ciliaris lines formed a separate group under control treatment and P. medicaginis infection and they are the most vigorous in growth. These results indicate that M. ciliaris is the least susceptible in response to P. medicaginis infection among the three Medicago species investigated here, which can be used as a good candidate in crop rotation to reduce disease pressure in the field and as a source of P. medicaginis resistance for the improvement of forage legumes.

3.
Methods Mol Biol ; 2484: 143-159, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35461451

RESUMO

Induced mutations have been used to facilitate plant breeding for more than 80 years. Success requires the development of a mutant population and methods to evaluate that population. In this protocol we provide methods for the development of a chickpea mutant population using gamma irradiation, and low-cost methods for the molecular characterization of the mutant population. Specifically, this chapter provides detailed methods for (1) mutation induction by gamma rays and determination of LD50 and RD50, (2) phenotypic assessment of the M2 generation, (3) low-cost extraction of genomic DNA, and (4) identification of induced mutations using low-cost agarose-gel based TILLING. The methods are low-cost and designed to be applicable in most research settings.


Assuntos
Cicer , Cicer/genética , Raios gama/efeitos adversos , Mutação , Melhoramento Vegetal
4.
Plant Genome ; 15(4): e20264, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36222346

RESUMO

Alfalfa (Medicago sativa L.) selection for stress-prone regions has high priority for sustainable crop-livestock systems. This study assessed the genomic selection (GS) ability to predict alfalfa breeding values for drought-prone agricultural sites of Algeria, Morocco, and Argentina; managed-stress (MS) environments of Italy featuring moderate or intense drought; and one Tunisian site irrigated with moderately saline water. Additional aims were to investigate genotype × environment interaction (GEI) patterns and the effect on GS predictions of three single-nucleotide polymorphism (SNP) calling procedures, 12 statistical models that exclude or incorporate GEI, and allele dosage information. Our study included 127 genotypes from a Mediterranean reference population originated from three geographically contrasting populations, genotyped via genotyping-by-sequencing and phenotyped based on multi-year biomass dry matter yield of their dense-planted half-sib progenies. The GEI was very large, as shown by 27-fold greater additive genetic variance × environment interaction relative to the additive genetic variance and low genetic correlation for progeny yield responses across environments. The predictive ability of GS (using at least 37,969 SNP markers) exceeded 0.20 for moderate MS (representing Italian stress-prone sites) and the sites of Algeria and Argentina while being quite low for the Tunisian site and intense MS. Predictions of GS were complicated by rapid linkage disequilibrium decay. The weighted GBLUP model, GEI incorporation into GS models, and SNP calling based on a mock reference genome exhibited a predictive ability advantage for some environments. Our results support the specific breeding for each target region and suggest a positive role for GS in most regions when considering the challenges associated with phenotypic selection.


Assuntos
Medicago sativa , Seleção Genética , Medicago sativa/genética , Fenótipo , Melhoramento Vegetal , Genômica/métodos
5.
Genes (Basel) ; 13(1)2021 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-35052437

RESUMO

The species belonging to the genus Medicago are considered a very important genetic resource at global level both for planet's food security and for sustainable rangelands management. The checklist of the Italian flora (2021) includes a total number of 40 Medicago species for Italy, and 27 for Campania region, with a number of doubtful records or related to species no more found in the wild. In this study, 10 Medicago species native to Campania region, and one archaeophyte (M. sativa), identified by means of morphological diagnostic characters, were analyzed in a blind test to assay the efficacy of nine microsatellite markers (five cp-SSRs and four n-SSRs). A total number of 33 individuals from 6 locations were sampled and genotyped. All markers were polymorphic, 40 alleles were obtained with n-SSRs ranging from 8-12 alleles per locus with an average of 10 alleles per marker, PIC values ranged from 0.672 to 0.847, and the most polymorphic SSR was MTIC 564. The cp-SSRs markers were highly polymorphic too; PIC values ranged from 0.644 to 0.891 with an average of 0.776, the most polymorphic cp-SSR was CCMP10. 56 alleles were obtained with cp-SSRs ranging from 7 to 17 alleles per locus with an average of 11. AMOVA analysis with n-SSR markers highlighted a great level of genetic differentiation among the 11 species, with a statistically significant fixation index (FST). UPGMA clustering and Bayesian-based population structure analysis assigned these 11 species to two main clusters, but the distribution of species within clusters was not the same for the two analyses. In conclusion, our results demonstrated that the combination of the used SSRs well distinguished the 11 Medicago species. Moreover, our results demonstrated that the use of a limited number of SSRs might be considered for further genetic studies on other Medicago species.


Assuntos
Cloroplastos/genética , DNA de Plantas/genética , Medicago/genética , Repetições de Microssatélites , Polimorfismo Genético , Teorema de Bayes , Genoma de Planta , Itália , Medicago/classificação , Medicago/crescimento & desenvolvimento , Filogenia
6.
Front Plant Sci ; 9: 1568, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30429862

RESUMO

In order to increase genetic variability for chickpea improvement, the Kabuli genotype, variety Ghab4, was treated with 280 Grays of gamma rays (Cobalt 60). Field characterization began with the M2 generation. A total of 135 M2 families were sown in the field resulting in approximately 4,000 plants. Traits related to phenology (days to flowering, days to maturity), plant morphology of vegetative parts (plant height, height of first pod, number of primary branches per plant) and yield (number of seeds per pod, total number of pods per plant, total number of seeds per plant, seed yield and hundred seed weight) were recorded and analyzed to evaluate genetic variability. An evaluation of the efficacy of low-cost TILLING (Targeting Induced Local Lesions IN Genomes) to discover mutations in the M2 generation was undertaken. Mutation screening focused on genes involved in resistance to two important diseases of chickpea; Ascochyta blight (AB) and Fusarium wilt (FW), as well as genes responsible for early flowering. Analysis of variance showed a highly significant difference among mutant families for all studied traits. The higher estimates of genetic parameters (genotypic and phenotypic coefficient of variation, broad sense heritability and genetic advance) were recorded for number of seeds per plant and yield. Total yield was highly significant and positively correlated with number of pods and seeds per plant. Path analysis revealed that the total number of seeds per plant had the highest positive direct effect followed by hundred seed weight parameter. One cluster from nine exhibited the highest mean values for total number of pods and seeds per plant as well as yield per plant. According to Dunnett's test, 37 M2 families superior to the control were determined for five agronomical traits. Pilot experiments with low-cost TILLING show that the seed stock used for mutagenesis is homogeneous and that small mutations do not predominate at the dosage used.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA