Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Nucl Med ; 60(8): 1147-1153, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30733324

RESUMO

The M1 muscarinic acetylcholine receptor (mAChR) plays an important role in learning and memory, and therefore is a target for development of drugs for treatment of cognitive impairments in Alzheimer disease and schizophrenia. The availability of M1-selective radiotracers for PET will help in developing therapeutic agents by providing an imaging tool for assessment of drug dose-receptor occupancy relationship. Here we report the synthesis and evaluation of 11C-LSN3172176 (ethyl 4-(6-(methyl-11C)-2-oxoindolin-1-yl)-[1,4'-bipiperidine]-1'-carboxylate) in nonhuman primates. Methods:11C-LSN3172176 was radiolabeled via the Suzuki-Miyaura cross-coupling method. PET scans in rhesus macaques were acquired for 2 h with arterial blood sampling and metabolite analysis to measure the input function. Blocking scans with scopolamine (50 µg/kg) and the M1-selective agent AZD6088 (0.67 and 2 mg/kg) were obtained to assess tracer binding specificity and selectivity. Regional brain time-activity curves were analyzed with the 1-tissue-compartment model and the multilinear analysis method (MA1) to calculate regional distribution volume. Nondisplaceable binding potential values were calculated using the cerebellum as a reference region. Results:11C-LSN3172176 was synthesized with greater than 99% radiochemical purity and high molar activity. In rhesus monkeys, 11C-LSN3172176 metabolized rapidly (29% ± 6% parent remaining at 15 min) and displayed fast kinetics and extremely high uptake in the brain. Imaging data were modeled well with the 1-tissue-compartment model and MA1 methods. MA1-derived distribution volume values were high (range, 10-81 mL/cm3) in all known M1 mAChR-rich brain regions. Pretreatment with scopolamine and AZD6088 significantly reduced the brain uptake of 11C-LSN3172176, thus demonstrating its binding specificity and selectivity in vivo. The cerebellum appeared to be a suitable reference region for derivation of nondisplaceable binding potential, which ranged from 2.42 in the globus pallidus to 8.48 in the nucleus accumbens. Conclusion:11C-LSN3172176 exhibits excellent in vivo binding and imaging characteristics in nonhuman primates and appears to be the first appropriate radiotracer for PET imaging of human M1 AChR.


Assuntos
Radioisótopos de Carbono/farmacologia , Indóis/farmacologia , Piperidinas/farmacologia , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos/farmacologia , Receptor Muscarínico M1/análise , Animais , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Humanos , Imidazolidinas/farmacologia , Cinética , Ligantes , Macaca mulatta , Camundongos , Radioquímica , Ratos , Padrões de Referência , Distribuição Tecidual
2.
J Nucl Med ; 60(8): 1140-1146, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30877174

RESUMO

The 11ß-hydroxysteroid dehydrogenase type 1 (11ß-HSD1) enzyme converts cortisone to cortisol and participates in the regulation of glucocorticoid levels in tissues. 11ß-HSD1 is expressed in the liver, kidney, adipose tissue, placenta, and brain. 11ß-HSD1 is a target for treatment of depression, anxiety, posttraumatic stress disorder, and also against age-related cognitive function and memory loss. In this study, we evaluated the radiotracer 11C-AS2471907 (3-(2-chlorophenyl)-4-(methyl-11C)-5-[2-[2,4,6-trifluorophenoxy]propan-2-yl]-4H-1,2,4-triazole) to image 11ß-HSD1 availability in the human brain with PET. Methods: Fifteen subjects were included in the study. All subjects underwent one 2-h scan after a bolus administration of 11C-AS2471907. Two subjects underwent an additional scan after blockade with the selective and high-affinity 11ß-HSD1 inhibitor ASP3662 to evaluate 11C-AS2471907 nondisplaceable distribution volume. Five subjects also underwent an additional scan to evaluate the within-day test-retest variability of 11C-AS2471907 volumes of distribution (VT). Results:11C-AS2471907 time-activity curves were best fitted by the 2-tissue-compartment (2TC) model. 11C-AS2471907 exhibited a regionally varying pattern of uptake throughout the brain. The VT of 11C-AS2471907 ranged from 3.7 ± 1.5 mL/cm3 in the caudate nucleus to 14.5 ± 5.3 mL/cm3 in the occipital cortex, with intermediate values in the amygdala, white matter, cingulum, insula, frontal cortex, putamen, temporal and parietal cortices, cerebellum, and thalamus (from lowest to highest VT). From the blocking scans, nondisplaceable distribution volume was determined to be 0.16 ± 0.04 mL/cm3 for 11C-AS2471907. Thus, nearly all uptake was specific and the binding potential ranged from 22 in the caudate to 90 in the occipital cortex. Test-retest variability of 2TC VT values was less than 10% in most large cortical regions (14% in parietal cortex) and ranged from 14% (cerebellum) to 51% (amygdala) in other regions. The intraclass correlation coefficient of 2TC VT values ranged from 0.55 in the white matter to 0.98 in the cerebellum. Conclusion:11C-AS2471907 has a high fraction of specific binding in vivo in humans and reasonable within-day reproducibility of binding parameters.


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 1/metabolismo , Encéfalo/enzimologia , Tomografia por Emissão de Pósitrons , Triazóis/farmacologia , Adulto , Mapeamento Encefálico , Radioisótopos de Carbono/análise , Humanos , Cinética , Masculino , Pessoa de Meia-Idade , Compostos Radiofarmacêuticos/análise , Padrões de Referência , Reprodutibilidade dos Testes , Distribuição Tecidual , Triazóis/análise
3.
J Nucl Med ; 59(1): 140-146, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28747521

RESUMO

The κ-opioid receptor (KOR) has been implicated in depression, addictions, and other central nervous system disorders and, thus, is an important target for drug development. We previously developed several 11C-labeled PET radiotracers for KOR imaging in humans. Here we report the synthesis and evaluation of 18F-LY2459989 as the first 18F-labeled KOR antagonist radiotracer in nonhuman primates and its comparison with 11C-LY2459989. Methods: The novel radioligand 18F-LY2459989 was synthesized by 18F displacement of a nitro group or an iodonium ylide. PET scans in rhesus monkeys were obtained on a small-animal scanner to assess the pharmacokinetic and in vivo binding properties of the ligand. Metabolite-corrected arterial activity curves were measured and used as input functions in the analysis of brain time-activity curves and the calculation of binding parameters. Results: With the iodonium ylide precursor, 18F-LY2459989 was prepared at high radiochemical yield (36% ± 7% [mean ± SD]), radiochemical purity (>99%), and mean molar activity (1,175 GBq/µmol; n = 6). In monkeys, 18F-LY2459989 was metabolized at a moderate rate, with a parent fraction of approximately 35% at 30 min after injection. Fast and reversible kinetics were observed, with a regional peak uptake time of less than 20 min. Pretreatment with the selective KOR antagonist LY2456302 (0.1 mg/kg) decreased the activity level in regions with high levels of binding to that in the cerebellum, thus demonstrating the binding specificity and selectivity of 18F-LY2459989 in vivo. Regional time-activity curves were well fitted by the multilinear analysis 1 kinetic model to derive reliable estimates of regional distribution volumes. With the cerebellum as the reference region, regional binding potentials were calculated and ranked as follows: cingulate cortex > insula > caudate/putamen > frontal cortex > temporal cortex > thalamus, consistent with the reported KOR distribution in the monkey brain. Conclusion: The evaluation of 18F-LY2459989 in nonhuman primates demonstrated many attractive imaging properties: fast tissue kinetics, specific and selective binding to the KOR, and high specific binding signals. A side-by-side comparison of 18F-LY2459989 and 11C-LY2459989 indicated similar kinetic and binding profiles for the 2 radiotracers. Taken together, the results indicated that 18F-LY2459989 appears to be an excellent PET radiotracer for the imaging and quantification of the KOR in vivo.


Assuntos
Benzamidas/síntese química , Benzamidas/farmacologia , Radioisótopos de Flúor , Tomografia por Emissão de Pósitrons/métodos , Piridinas/síntese química , Piridinas/farmacologia , Receptores Opioides kappa/antagonistas & inibidores , Animais , Benzamidas/química , Técnicas de Química Sintética , Marcação por Isótopo , Macaca mulatta , Piridinas/química , Traçadores Radioativos , Radioquímica
4.
J Nucl Med ; 58(6): 982-988, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28232607

RESUMO

The σ1 receptors (S1Rs) are implicated in a variety of diseases including Alzheimer disease and cancer. Previous PET S1R radiotracers are characterized by slow kinetics or off-target binding that impedes their use in humans. Here, we report the first PET imaging evaluation in rhesus monkeys of 4 18F-labeled spirocyclic piperidine-based PET radiotracers (18F-1 to 18F-4). Methods: Baseline scans for the 4 radiotracers were obtained on an adult male rhesus monkey. Blocking scans were obtained with the S1R-selective agonist SA4503 to assess binding specificity of 18F-2 and 18F-4 Arterial input functions were measured, and binding parameters were determined with kinetic modeling analysis. Results: In the rhesus brain, all 4 radiotracers showed high and fast uptake. Tissue activity washout was rapid for 18F-2 and 18F-4, and much slower for 18F-1 and 18F-3, in line with their respective in vitro S1R-binding affinities. Both the 1-tissue-compartment and multilinear analysis-1 kinetic models provided good fits of time-activity curves and reliable estimates of distribution volume. Regional distribution volume values were highest in the cingulate cortex and lowest in the thalamus for all radiotracers. 18F-4 showed greater differential uptake across brain regions and 3-fold-higher binding potential than 18F-2 SA4503 at the dose of 0.5 mg/kg blocked approximately 85% (18F-2) and 95% (18F-4) of radiotracer binding. Conclusion: Tracers 18F-2 and 18F-4 displayed high brain uptake and fast tissue kinetics, with 18F-4 having higher specific binding signals than 18F-2 in the same monkey. Taken together, these data indicate that both 18F-2 and 18F-4 possess the requisite kinetic and imaging properties as viable PET tracers for imaging S1R in the human brain.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Radioisótopos de Flúor/farmacocinética , Imagem Molecular/métodos , Tomografia por Emissão de Pósitrons/métodos , Receptores sigma/metabolismo , Animais , Radioisótopos de Flúor/química , Humanos , Marcação por Isótopo/métodos , Macaca mulatta , Masculino , Taxa de Depuração Metabólica , Especificidade de Órgãos/fisiologia , Compostos Radiofarmacêuticos/síntese química , Compostos Radiofarmacêuticos/farmacocinética , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Distribuição Tecidual , Receptor Sigma-1
5.
J Nucl Med ; 57(5): 777-84, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26848175

RESUMO

UNLABELLED: The synaptic vesicle glycoprotein 2A (SV2A) is found in secretory vesicles in neurons and endocrine cells. PET with a selective SV2A radiotracer will allow characterization of drugs that modulate SV2A (e.g., antiepileptic drugs) and potentially could be a biomarker of synaptic density (e.g., in neurodegenerative disorders). Here we describe the synthesis and characterization of the SV2A PET radiotracer (11)C-UCB-J ((R)-1-((3-((11)C-methyl-(11)C)pyridin-4-yl)methyl)-4-(3,4,5-trifluorophenyl)pyrrolidin-2-one) in nonhuman primates, including whole-body biodistribution. METHODS: (11)C-UCB-J was prepared by C-(11)C-methylation of the 3-pyridyl trifluoroborate precursor with (11)C-methyl iodide via the Suzuki-Miyaura cross-coupling method. Rhesus macaques underwent multiple scans including coinjection with unlabeled UCB-J (17, 50, and 150 µg/kg) or preblocking with the antiepileptic drug levetiracetam at 10 and 30 mg/kg. Scans were acquired for 2 h with arterial sampling and metabolite analysis to measure the input function. Regional volume of distribution (VT) was estimated using the 1-tissue-compartment model. Target occupancy was assessed using the occupancy plot; the dissociation constant (Kd) was determined by fitting self-blocking occupancies to a 1-site model, and the maximum number of receptor binding sites (Bmax) values were derived from baseline VT and from the estimated Kd and the nondisplaceable distribution volume (VND). RESULTS: (11)C-UCB-J was synthesized with greater than 98% purity. (11)C-UCB-J exhibited high free fraction (0.46 ± 0.02) and metabolized at a moderate rate (39% ± 5% and 24% ± 3% parent remaining at 30 and 90 min) in plasma. In the monkey brain, (11)C-UCB-J displayed high uptake and fast kinetics. VT was high (∼25-55 mL/cm(3)) in all gray matter regions, consistent with the ubiquitous expression of SV2A. Preblocking with 10 and 30 mg/kg of levetiracetam resulted in approximately 60% and 90% occupancy, respectively. Analysis of the self-blocking scans yielded a Kd estimate of 3.4 nM and Bmax of 125-350 nM, in good agreement with the in vitro inhibition constant (Ki) of 6.3 nM and regional Bmax in humans. Whole-body biodistribution revealed that the liver and the brain are the dose-limiting organs for males and females, respectively. CONCLUSION: (11)C-UCB-J exhibited excellent characteristics as an SV2A PET radiotracer in nonhuman primates. The radiotracer is currently undergoing first-in-human evaluation.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Glicoproteínas de Membrana/metabolismo , Tomografia por Emissão de Pósitrons , Piridinas/síntese química , Pirrolidinas/síntese química , Pirrolidinonas/síntese química , Animais , Técnicas de Química Sintética , Feminino , Humanos , Macaca mulatta , Masculino , Permeabilidade , Piridinas/química , Piridinas/metabolismo , Piridinas/farmacocinética , Pirrolidinas/química , Pirrolidinas/metabolismo , Pirrolidinas/farmacocinética , Pirrolidinonas/química , Pirrolidinonas/metabolismo , Pirrolidinonas/farmacocinética , Radioquímica , Ratos , Distribuição Tecidual
6.
J Biol Chem ; 282(41): 29812-20, 2007 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-17698842

RESUMO

beta-D-2'-Deoxy-2'-fluoro-2'-C-methylcytidine (PSI-6130) is a potent inhibitor of hepatitis C virus (HCV) replication in the subgenomic HCV replicon system, and its corresponding 5'-triphosphate is a potent inhibitor of the HCV RNA polymerase in vitro. In this study the formation of PSI-6130-triphosphate was characterized in primary human hepatocytes. PSI-6130 and its 5'-phosphorylated derivatives were identified, and the intracellular concentrations were determined. In addition, the deaminated derivative of PSI-6130, beta-d-2'-deoxy-2'-fluoro-2'-C-methyluridine (RO2433, PSI-6026) and its corresponding phosphorylated metabolites were identified in human hepatocytes after incubation with PSI-6130. The formation of the 5'-triphosphate (TP) of PSI-6130 (PSI-6130-TP) and RO2433 (RO2433-TP) increased with time and reached steady state levels at 48 h. The formation of both PSI-6130-TP and RO2433-TP demonstrated a linear relationship with the extracellular concentrations of PSI-6130 up to 100 mum, suggesting a high capacity of human hepatocytes to generate the two triphosphates. The mean half-lives of PSI-6130-TP and RO2433-TP were 4.7 and 38 h, respectively. RO2433-TP also inhibited RNA synthesis by the native HCV replicase isolated from HCV replicon cells and the recombinant HCV polymerase NS5B with potencies comparable with those of PSI-6130-TP. Incorporation of RO2433-5'-monophosphate (MP) into nascent RNA by NS5B led to chain termination similar to that of PSI-6130-MP. These results demonstrate that PSI-6130 is metabolized to two pharmacologically active species in primary human hepatocytes.


Assuntos
Antivirais/farmacologia , Desoxicitidina/análogos & derivados , Hepacivirus/metabolismo , Células Cultivadas , Cromatografia Líquida de Alta Pressão , RNA Polimerases Dirigidas por DNA/metabolismo , Desoxicitidina/farmacologia , Hepacivirus/enzimologia , Hepatócitos/metabolismo , Humanos , Concentração Inibidora 50 , Modelos Biológicos , Modelos Químicos , Fosfatos/química , Fosforilação , RNA Polimerase Dependente de RNA/metabolismo , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA