Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Gen Virol ; 100(4): 679-690, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30794120

RESUMO

Twelve complete genome sequences of Phthorimaea operculella granulovirus (PhopGV) isolates from four different continents (Africa, South America, Asia and Europe) were analysed after Illumina next-generation sequencing (NGS). The isolates have a circular double-stranded DNA genome that is 118 355 to 119 177 bp in length and all of them encode 130 open reading frames (ORFs). Analysis of single-nucleotide polymorphisms (SNPs) revealed a unique set of SNP positions for every tested isolate. The genome sequences of the investigated PhopGV isolates were classified into a new system of four (1-4) groups according to the presence of group-specific SNPs as well as insertions and deletions. These genome groups correlated with phylogenetic lineages inferred from minimum-evolution trees of the whole-genome consensus nucleotide sequences. All members of group 3 originated from the Mediterranean area, whereas the geographical origin and the group assignment did not correlate for isolates belonging to genome groups 1, 2 or 4. The high degree of coverage facilitated the determination of variant nucleotide frequencies. We conclude that the geographical isolates of PhopGV are genetically highly similar. On the other hand, they were rarely genetically homogenous and in most cases appeared to be mixtures of multiple genotypes.


Assuntos
Granulovirus/genética , Lepidópteros/virologia , Mariposas/virologia , Polimorfismo de Nucleotídeo Único/genética , África , Animais , Ásia , DNA Viral/genética , Europa (Continente) , Genoma Viral/genética , Genótipo , Larva/virologia , Fases de Leitura Aberta/genética , Filogenia , Análise de Sequência de DNA/métodos , América do Sul
2.
J Invertebr Pathol ; 160: 76-86, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30550745

RESUMO

An antagonistic effect of a microsporidium (Nosema sp.) infection on the virulence of Phthorimaea operculella granulovirus (PhopGV) was recorded in potato tuber moth (Phthorimaea operculella) larvae with mixed infections. When the P. operculella colony was infected at a high rate (42.8-100%) with the microsporidium, it was less susceptible to the isolate PhopGV-GR1.1. A virus concentration 1.89 × 105 higher was necessary to cause the same level of mortality produced in the P. operculella colony when it was uninfected or had a low level of infection with the microsporidium (0-30%). This antagonistic effect was driven by a Nosema isolate (termed Nosema sp. Phop) that was purified from microsporidian-infected P. operculella individuals. The purified microsporidium was characterised by morphological features, including size, filament coils and different developmental stages using transmission electron microscopy (TEM). On the molecular level, the partial cistron rDNA information of the small ribosomal subunit (SSU), internal transcribed spacer (ITS), and the large ribosomal subunit (LSU) were identified. Phylogenetic analyses revealed that the newly described microsporidium belongs to the "true Nosema" clade. Partial sequence information of the RNA polymerase II largest subunit (RPB1) suggested that Nosema bombycis is the closest relative (98% identity). The morphological and phylogenetic characteristics suggest that it is an isolate of N. bombycis. Interactions of microsporidia and betabaculoviruses are rarely described in the literature, although mixed infections of different pathogens seem to be rather common events, ranging from antagonistic to mutualistic interactions. The observed antagonistic relationship between the Nosema sp. and PhopGV-GR1.1 showed that pathogen interactions need to be considered when single pathogens are applied to insect populations in the context of biological control of insect pests.


Assuntos
Coinfecção , Granulovirus/patogenicidade , Mariposas/parasitologia , Mariposas/virologia , Nosema , Animais , Antibiose , Coinfecção/parasitologia , Coinfecção/virologia , DNA Ribossômico/genética , Larva/parasitologia , Larva/virologia , Nosema/classificação , Nosema/genética , Nosema/ultraestrutura , Filogenia
3.
Viruses ; 11(4)2019 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-30970670

RESUMO

Virus infections of insects can easily stay undetected, neither showing typical signs of a disease, nor being lethal. Such a stable and most of the time covert infection with Phthorimaea operculella granulovirus (PhopGV) was detected in a Phthorimaea operculella laboratory colony, which originated from Italy (Phop-IT). This covert virus (named PhopGV-R) was isolated, purified and characterized at the genetic level by full genome sequencing. Furthermore, the insect colony Phop-IT was used to study the crowding effect, double infection with other PhopGV isolates (CR3 and GR1), and co-infection exclusion. An infection with a second homologous virus (PhopGV-CR3) activated the covert virus, while a co-infection with another virus isolate (PhopGV-GR1) led to its suppression. This study shows that stable virus infections can be common for insect populations and have an impact on population dynamics because they can suppress or enable co-infection with another virus isolate of the same species.


Assuntos
Animais de Laboratório/virologia , Granulovirus/crescimento & desenvolvimento , Granulovirus/isolamento & purificação , Lepidópteros/virologia , Animais , Animais de Laboratório/crescimento & desenvolvimento , Comportamento Animal , Granulovirus/classificação , Granulovirus/genética , Itália , Lepidópteros/crescimento & desenvolvimento , Dinâmica Populacional , Sequenciamento Completo do Genoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA