Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Hum Mutat ; 34(1): 79-82, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22936364

RESUMO

A hexanucleotide repeat expansion in chromosome 9 open reading frame 72 (C9orf72) can cause amyotrophic lateral sclerosis (ALS) and/or frontotemporal dementia (FTD). We assessed its frequency in 781 sporadic ALS (sALS) and 155 familial ALS (fALS) cases, and in 248 Spanish controls. We tested the presence of the reported founder haplotype among mutation carriers and in 171 Ceph Europeans from Utah (CEU), 170 Yoruba Africans, 81 Han Chinese, and 85 Japanese subjects. The C9orf72 expansion was present in 27.1% of fALS and 3.2% of sALS. Mutation carriers showed lower age at onset (P = 0.04), shorter survival (P = 0.02), greater co-occurrence of FTD (P = 8.2 × 10(-5)), and more family history of ALS (P = 1.4 × 10(-20)), than noncarriers. No association between alleles within the normal range and the risk of ALS was found (P = 0.12). All 61 of the mutation carriers were tested and a patient carrying 28 hexanucleotide repeats presented with the founder haplotype. This haplotype was found in 5.6% Yoruba Africans, 8.9% CEU, 3.9% Japanese, and 1.6% Han Chinese chromosomes.


Assuntos
Esclerose Lateral Amiotrófica/genética , Expansão das Repetições de DNA/genética , Predisposição Genética para Doença/genética , Proteínas/genética , África/etnologia , Idoso , Idoso de 80 Anos ou mais , Esclerose Lateral Amiotrófica/etnologia , Povo Asiático/genética , Proteína C9orf72 , China/etnologia , Análise Mutacional de DNA , Etnicidade/genética , Europa (Continente)/etnologia , Feminino , Frequência do Gene , Predisposição Genética para Doença/etnologia , Haplótipos , Heterozigoto , Humanos , Japão/etnologia , Estimativa de Kaplan-Meier , Masculino , Mutação , Polimorfismo de Nucleotídeo Único , Espanha
2.
J Clin Med ; 12(10)2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37240666

RESUMO

BACKGROUND: Amyotrophic lateral sclerosis (ALS) is a multisystemic, progressive, neurodegenerative disorder. Despite it being generally fatal within a period of 2-4 years, it is highly heterogeneous; as a result, survival periods may vary greatly among individual patients. Biomarkers can serve as tools for diagnosis, prognosis, indicators of therapeutic response, and future therapeutics. Free-radical-dependent mitochondrial damage is believed to play a crucial role in neurodegeneration in ALS. Mitochondrial aconitase, which is also known as aconitase 2 (Aco2), is a key Krebs cycle enzyme and is involved in the regulation of cellular metabolism and iron homeostasis. Aco2 is very sensitive to oxidative inactivation and can aggregate and accumulate in the mitochondrial matrix, causing mitochondrial dysfunction. Loss of Aco2 activity may therefore reflect increased levels of mitochondrial dysfunction due to oxidative damage and could be relevant to ALS pathogenesis. The aim of our study was to confirm changes in mitochondrial aconitase activity in peripheral blood and to determine whether such changes are dependent on, or independent of, the patient's condition and to propose the feasibility of using them as possible valid biomarkers to quantify the progression of the disease and as a predictor of individual prognosis in ALS. METHODS: We measured the Aco2 enzymatic activity in the platelets of blood samples taken from 22 controls and 26 ALS patients at different stages of disease development. We then correlated antioxidant activity with clinical and prognostic variables. RESULTS: Aco2 activity was significantly lower in the 26 ALS patients than in the 22 controls (p < 0.05). Patients with higher levels of Aco2 activity survived longer than those with lower levels (p < 0.05). Aco2 activity was also higher in patients with earlier onset (p < 0.05) and in those with predominantly upper motor neuron signs. CONCLUSIONS: Aco2 activity seems to be an independent factor that could be used in the long-term survival prognosis of ALS. Our findings suggest that blood Aco2 could be a leading candidate for use as a biomarker to improve prognosis. More studies are needed to confirm these results.

3.
J Bioenerg Biomembr ; 43(2): 181-6, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21451979

RESUMO

A mutant form of the copper/zinc superoxide dismutase (SOD1) protein is found in some patients with amyotrophic lateral sclerosis (ALS). Alteration of the activity of this antioxidant enzyme leads to an oxidative stress imbalance, which damages the structure of lipids and proteins in the CNS. Using fluorescence spectroscopy, we monitored membrane fluidity in the spinal cord and the brain in a widely used animal model of ALS, the SOD(G93A) mouse, which develops symptoms similar to ALS with an accelerated course. Our results show that the membrane fluidity of the spinal cord in this animal model significantly decreased in symptomatic animals compared with age-matched littermate controls. To the best of our knowledge, this is the first report showing that membrane fluidity is affected in the spinal cord of a SOD(G93A) animal model of ALS. Changes in membrane fluidity likely contribute substantially to alterations in cell membrane functions in the nervous tissue from SOD(G93A) mice.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Encéfalo/metabolismo , Membrana Celular/metabolismo , Fluidez de Membrana , Medula Espinal/metabolismo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Animais , Encéfalo/patologia , Membrana Celular/genética , Membrana Celular/patologia , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Estresse Oxidativo/genética , Medula Espinal/patologia , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1
5.
Neural Regen Res ; 15(6): 988-995, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31823868

RESUMO

Among collagen members in the collagen superfamily, type XIX collagen has raised increasing interest in relation to its structural and biological roles. Type XIX collagen is a Fibril-Associated Collagen with Interrupted Triple helices member, one main subclass of collagens in this superfamily. This collagen contains a triple helix composed of three polypeptide segments aligned in parallel and it is associated with the basement membrane zone in different tissues. The molecular structure of type XIX collagen consists of five collagenous domains, COL1 to COL5, interrupted by six non-collagenous domains, NC1 to NC6. The most relevant domain by which this collagen exerts its biological roles is NC1 domain that can be cleavage enzymatically to release matricryptins, exerting anti-tumor and anti-angiogenic effect in murine and human models of cancer. Under physiological conditions, type XIX collagen expression decreases after birth in different tissues although it is necessary to keep its basal levels, mainly in skeletal muscle and hippocampal and telencephalic interneurons in brain. Notwithstanding, in amyotrophic lateral sclerosis, altered transcript expression levels show a novel biological effect of this collagen beyond its structural role in basement membranes and its anti-tumor and anti-angiogenic properties. Type XIX collagen can exert a compensatory effect to ameliorate the disease progression under neurodegenerative conditions specific to amyotrophic lateral sclerosis in transgenic SOD1G93A mice and amyotrophic lateral sclerosis patients. This novel biological role highlights its nature as prognostic biomarker of disease progression in and as promising therapeutic target, paving the way to a more precise prognosis of amyotrophic lateral sclerosis.

6.
Aging Dis ; 10(2): 278-292, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31011479

RESUMO

The identification of more reliable diagnostic or prognostic biomarkers in age-related neurodegenerative diseases, such as Amyotrophic Lateral Sclerosis (ALS), is urgently needed. The objective in this study was to identify more reliable prognostic biomarkers of ALS mirroring neurodegeneration that could be of help in clinical trials. A total of 268 participants from three cohorts were included in this study. The muscle and blood cohorts were analyzed in two cross-sectional studies, while the serial blood cohort was analyzed in a longitudinal study at 6-monthly intervals. Fifteen target genes and fourteen proteins involved in muscle physiology and differentiation, metabolic processes and neuromuscular junction dismantlement were studied in the three cohorts. In the muscle biopsy cohort, the risk for a higher mortality in an ALS patient that showed high Collagen type XIX, alpha 1 (COL19A1) protein levels and a fast progression of the disease was 70.5% (P < 0.05), while in the blood cohort, this risk was 20% (P < 0.01). In the serial blood cohort, the linear mixed model analysis showed a significant association between increasing COL19A1 gene levels along disease progression and a faster progression during the follow-up period of 24 months (P < 0.05). Additionally, higher COL19A1 levels and a faster progression increased 17.9% the mortality risk (P < 0.01). We provide new evidence that COL19A1 can be considered a prognostic biomarker that could help the selection of homogeneous groups of patients for upcoming clinical trial and may be pointed out as a promising therapeutic target in ALS.

7.
Mol Neurobiol ; 55(1): 1-12, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28840473

RESUMO

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease of unknown origin and characterized by a relentless loss of motor neurons that causes a progressive muscle weakness until death. Among the several pathogenic mechanisms that have been related to ALS, a dysregulation of calcium-buffering proteins in motor neurons of the brain and spinal cord can make these neurons more vulnerable to disease progression. Downstream regulatory element antagonist modulator (DREAM) is a neuronal calcium-binding protein that plays multiple roles in the nucleus and cytosol. The main aim of this study was focused on the characterization of DREAM and glial fibrillary acid protein (GFAP) in the brain and spinal cord tissues from transgenic SOD1G93A mice and ALS patients to unravel its potential role under neurodegenerative conditions. The DREAM and GFAP levels in the spinal cord and different brain areas from transgenic SOD1G93A mice and ALS patients were analyzed by Western blot and immunohistochemistry. Our findings suggest that the calcium-dependent excitotoxicity progressively enhanced in the CNS in ALS could modulate the multifunctional nature of DREAM, strengthening its apoptotic way of action in both motor neurons and astrocytes, which could act as an additional factor to increase neuronal damage. The direct crosstalk between astrocytes and motor neurons can become vulnerable under neurodegenerative conditions, and DREAM could act as an additional switch to enhance motor neuron loss. Together, these findings could pave the way to further study the molecular targets of DREAM to find novel therapeutic strategies to fight ALS.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Astrócitos/metabolismo , Proteínas Interatuantes com Canais de Kv/metabolismo , Neurônios Motores/metabolismo , Proteínas Repressoras/metabolismo , Medula Espinal/metabolismo , Idoso , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Animais , Astrócitos/patologia , Modelos Animais de Doenças , Progressão da Doença , Humanos , Proteínas Interatuantes com Canais de Kv/genética , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Neurônios Motores/patologia , Proteínas Repressoras/genética , Medula Espinal/patologia , Regulação para Cima
8.
Mol Neurobiol ; 49(1): 1-9, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23761047

RESUMO

Blood platelets have been widely proposed as biomarkers in studies of mitochondrial function and aging-related and neurodegenerative diseases. Defects in mitochondrial function were found not only in the substantia nigra of Parkinson's disease patients but also in their blood platelets. Similarly, it has also been described in the blood platelet mitochondria of Alzheimer's disease patients. To study mitochondrial aerobic metabolism function and protein expression in platelets of multiple sclerosis (MS) patients and control subjects, mitochondrial aconitase, mitochondrial superoxide dismutases 1 and 2 (SOD1 and SOD2), and respiratory complex enzyme activities in platelets of MS patients and control subjects were determined. Likewise, mitochondrial lipid peroxidation and mitochondrial SOD1 and cytochrome c expressions were investigated. Mitochondrial aconitase activity was higher in MS patients than in controls (P < 0.05). A significant increase on all respiratory complex activities in MS patients was observed (P < 0.05). Mitochondrial lipid peroxidation was significantly higher in MS patients than in controls (P < 0.05). Significant changes of cytochrome c and mitochondrial SOD1 expressions were detected (P < 0.05), with a decrease of 44 ± 5 % and an increase of 46 ± 6 %, respectively. Our study reveals that significant changes in mitochondrial aerobic metabolism function and mitochondrial SOD1 and cytochrome c expressions are produced in platelets of MS patients.


Assuntos
Citocromos c/biossíntese , Regulação Enzimológica da Expressão Gênica , Proteínas Mitocondriais/biossíntese , Esclerose Múltipla/enzimologia , Animais , Plaquetas/enzimologia , Citocromos c/genética , Ativação Enzimática/genética , Humanos , Proteínas Mitocondriais/genética , Esclerose Múltipla/diagnóstico , Esclerose Múltipla/genética , Superóxido Dismutase/biossíntese , Superóxido Dismutase/genética , Superóxido Dismutase-1
9.
J Neurol ; 258(5): 762-9, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21108037

RESUMO

A mutant form of the ubiquitous copper/zinc superoxide dismutase (SOD1) protein has been found in some patients with amyotrophic lateral sclerosis (ALS). We monitored oxidative stress in an animal model of ALS, the SOD(G93A) mouse, which develops a disease similar to ALS with an accelerated course. The aim of this work was to show that ALS damages several organs and tissues, from an oxidative stress point of view. We measured lipid and protein oxidative damage in different tissue homogenates of SOD(G93A) mice. The biomarkers that we analyzed were malondialdehyde + 4-hydroxyalkenal (MDA + 4-HDA) and carbonyls, respectively. The spinal cord and brain of SOD(G93A) mice showed increased lipid peroxidation after 100 or 130 days compared to age-matched littermate controls. The CNS was most affected, but lipid peroxidation was also detected in the skeletal muscle and liver on day 130. No changes were observed in protein carbonylation in the homogenates. Our results are consistent with a multisystem etiology of ALS and suggest that oxidative stress may play a primary role in ALS pathogenesis. Thus, oxidative stress represents a potential biomarker that might be useful in developing new therapeutic strategies for ALS.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Peroxidação de Lipídeos/fisiologia , Estresse Oxidativo/fisiologia , Esclerose Lateral Amiotrófica/patologia , Animais , Modelos Animais de Doenças , Camundongos , Camundongos Transgênicos
10.
Neuromuscul Disord ; 19(6): 418-22, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19433360

RESUMO

Desminopathy is a genetically heterogeneous disorder with autosomal dominant pattern of inheritance in most affected families; the age of disease onset is on average 30 years. We studied a patient with a history of recurrent episodes of syncope from infancy who later developed second-degree AV block and restrictive cardiomyopathy; she subsequently suffered several episodes of ventricular tachyarrhythmia requiring implantation of bicameral defibrillator. Neurological examination revealed rapidly progressive bilateral facial weakness, winging of the scapulae, symmetric weakness and atrophy of the trunk muscles, shoulder girdle and distal muscles of both upper and lower extremities. Muscle biopsy demonstrated signs of myofibrillar myopathy with prominent subsarcolemmal desmin-reactive aggregates. Molecular analysis identified a homozygous deletion in DES resulting in a predicted in-frame obliteration of seven amino acids (p.R173_E179del) in the 1B domain of desmin. We describe the youngest known desminopathy patient with severe cardiomyopathy and aggressive course leading to the devastation of cardiac, skeletal and smooth musculature at an early age.


Assuntos
Cardiomiopatias/genética , Desmina/genética , Homozigoto , Deleção de Sequência , Idade de Início , Cardiomiopatias/patologia , Cardiomiopatias/terapia , Análise Mutacional de DNA , Desfibriladores Implantáveis , Eletrocardiografia , Feminino , Coração/fisiopatologia , Humanos , Lactente , Músculos/patologia , Músculos/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA