Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Oncol Lett ; 28(1): 296, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38737977

RESUMO

Gastric cancer (GC) ranks fifth globally in cancer diagnoses and third for cancer-related deaths. Chemotherapy with 5-fluorouracil (5-FU), a primary treatment, faces challenges due to the development of chemoresistance. Tumor microenvironment factors, including C-C motif chemokine receptor 3 (CCR3), can contribute to chemoresistance. The present study evaluated the effect of CCR3 receptor inhibition using the antagonist SB 328437 and the molecular dynamics of this interaction on resistance to 5-FU in gastric cancer cells. The 5-FU-resistant AGS cell line (AGS R-5FU) demonstrated notable tolerance to higher concentrations of 5-FU, with a 2.6-fold increase compared with the parental AGS cell line. Furthermore, the mRNA expression levels of thymidylate synthase (TS), a molecular marker for 5-FU resistance, were significantly elevated in AGS R-5FU cells. CCR3 was shown to be expressed at significantly higher levels in these resistant cells. Combining SB 328437 with 5-FU resulted in a significant decrease in cell viability, particularly at higher concentrations of 5-FU. Furthermore, when SB 328437 was combined with 5-FU at a high concentration, the relative mRNA expression levels of CCR3 and TS decreased significantly. Computational analysis of CCR3 demonstrated dynamic conformational changes, especially in extracellular loop 2 region, which indicated potential alterations in ligand recognition. Docking simulations demonstrated that SB 328437 bound to the allosteric site of CCR3, inducing a conformational change in ECL2 and hindering ligand recognition. The present study provides comprehensive information on the molecular and structural aspects of 5-FU resistance and CCR3 modulation, highlighting the potential for therapeutic application of SB 328437 in GC treatment.

2.
Res Vet Sci ; 176: 105354, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38981836

RESUMO

Studies on the bacterial composition of seminal samples have primarily focused on species isolated from semen and their effects on fertility and reproductive health. Culture-independent techniques, such as 16S rRNA gene sequencing and shotgun metagenomics, have revolutionized our ability to identify unculturable bacteria, which comprise >90% of the microbiome. These techniques allow for comprehensive analysis of microbial communities in seminal samples, shedding light on their interactions and roles. In this study, we characterized the taxonomic diversity of seminal microbial communities in healthy stallions using 16S rRNA gene sequencing. Semen samples were collected from four stallions during the reproductive season, and DNA was extracted for sequencing. The results revealed a diverse array of bacterial taxa, with Firmicutes, Bacteroidota, and Proteobacteria being predominant phyla. At the family and genus levels, significant variations were observed among individuals, with individual variability in microbial richness and diversity standing out. Moreover, each stallion showed a distinct microbial fingerprint, indicating the presence of a characteristic microbial core for each stallion. These results underscore the importance of considering individual microbial profiles in understanding reproductive health and fertility outcomes.


Assuntos
RNA Ribossômico 16S , Sêmen , Animais , Cavalos/microbiologia , Masculino , Sêmen/microbiologia , RNA Ribossômico 16S/genética , Bactérias/genética , Bactérias/classificação , Bactérias/isolamento & purificação , Metagenômica , Microbiota , DNA Bacteriano/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA