Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
2.
Environ Microbiol ; 22(9): 3863-3882, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32656913

RESUMO

Ocean acidification (OA), a consequence of anthropogenic carbon dioxide (CO2 ) emissions, strongly impacts marine ecosystems. OA also influences iron (Fe) solubility, affecting biogeochemical and ecological processes. We investigated the interactive effects of CO2 and Fe availability on the metabolome response of a natural phytoplankton community. Using mesocosms we exposed phytoplankton to ambient (390 µatm) or future CO2 levels predicted for the year 2100 (900 µatm), combined with ambient (4.5 nM) or high (12 nM) dissolved iron (dFe). By integrating over the whole phytoplankton community, we assigned functional changes based on altered metabolite concentrations. Our study revealed the complexity of phytoplankton metabolism. Metabolic profiles showed three stages in response to treatments and phytoplankton dynamics. Metabolome changes were related to the plankton group contributing respective metabolites, explaining bloom decline and community succession. CO2 and Fe affected metabolic profiles. Most saccharides, fatty acids, amino acids and many sterols significantly correlated with the high dFe treatment at ambient pCO2 . High CO2 lowered the abundance of many metabolites irrespective of Fe. However, sugar alcohols accumulated, indicating potential stress. We demonstrate that not only altered species composition but also changes in the metabolic landscape affecting the plankton community may change as a consequence of future high-CO2 oceans.


Assuntos
Dióxido de Carbono/metabolismo , Haptófitas/metabolismo , Ferro/metabolismo , Microbiota , Fitoplâncton/metabolismo , Dióxido de Carbono/análise , Concentração de Íons de Hidrogênio , Ferro/química , Metaboloma , Fitoplâncton/classificação , Fitoplâncton/isolamento & purificação , Água do Mar/química , Água do Mar/microbiologia
3.
Ecol Lett ; 21(9): 1440-1452, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30014593

RESUMO

In food webs, interactions between competition and defence control the partitioning of limiting resources. As a result, simple models of these interactions contain links between biogeochemistry, diversity, food web structure and ecosystem function. Working at hierarchical levels, these mechanisms also produce self-similarity and therefore suggest how complexity can be generated from repeated application of simple underlying principles. Reviewing theoretical and experimental literature relevant to the marine photic zone, we argue that there is a wide spectrum of phenomena, including single cell activity of prokaryotes, microbial biodiversity at different levels of resolution, ecosystem functioning, regional biogeochemical features and evolution at different timescales; that all can be understood as variations over a common principle, summarised in what has been termed the 'Killing-the-Winner' (KtW) motif. Considering food webs as assemblages of such motifs may thus allow for a more integrated approach to aquatic microbial ecology.


Assuntos
Ecossistema , Cadeia Alimentar , Biodiversidade
4.
Mol Ecol ; 25(21): 5585-5602, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27662431

RESUMO

In order to characterize copepod feeding in relation to microbial plankton community dynamics, we combined metabarcoding and metabolome analyses during a 22-day seawater mesocosm experiment. Nutrient amendment of mesocosms promoted the development of haptophyte (Phaeocystis pouchetii)- and diatom (Skeletonema marinoi)-dominated plankton communities in mesocosms, in which Calanus sp. copepods were incubated for 24 h in flow-through chambers to allow access to prey particles (<500 µm). Copepods and mesocosm water sampled six times spanning the experiment were analysed using metabarcoding, while intracellular metabolite profiles of mesocosm plankton communities were generated for all experimental days. Taxon-specific metabarcoding ratios (ratio of consumed prey to available prey in the surrounding seawater) revealed diverse and dynamic copepod feeding selection, with positive selection on large diatoms, heterotrophic nanoflagellates and fungi, while smaller phytoplankton, including P. pouchetii, were passively consumed or even negatively selected according to our indicator. Our analysis of the relationship between Calanus grazing ratios and intracellular metabolite profiles indicates the importance of carbohydrates and lipids in plankton succession and copepod-prey interactions. This molecular characterization of Calanus sp. grazing therefore provides new evidence for selective feeding in mixed plankton assemblages and corroborates previous findings that copepod grazing may be coupled to the developmental and metabolic stage of the entire prey community rather than to individual prey abundances.


Assuntos
Copépodes/fisiologia , Código de Barras de DNA Taxonômico , Diatomáceas , Metaboloma , Fitoplâncton , Plâncton , Animais , Carboidratos/análise , Copépodes/genética , Comportamento Alimentar , Lipídeos/análise , Água do Mar
5.
Mol Ecol ; 24(12): 3026-42, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25893259

RESUMO

Microalgae in the division Haptophyta play key roles in the marine ecosystem and in global biogeochemical processes. Despite their ecological importance, knowledge on seasonal dynamics, community composition and abundance at the species level is limited due to their small cell size and few morphological features visible under the light microscope. Here, we present unique data on haptophyte seasonal diversity and dynamics from two annual cycles, with the taxonomic resolution and sampling depth obtained with high-throughput sequencing. From outer Oslofjorden, S Norway, nano- and picoplanktonic samples were collected monthly for 2 years, and the haptophytes targeted by amplification of RNA/cDNA with Haptophyta-specific 18S rDNA V4 primers. We obtained 156 operational taxonomic units (OTUs), from c. 400.000 454 pyrosequencing reads, after rigorous bioinformatic filtering and clustering at 99.5%. Most OTUs represented uncultured and/or not yet 18S rDNA-sequenced species. Haptophyte OTU richness and community composition exhibited high temporal variation and significant yearly periodicity. Richness was highest in September-October (autumn) and lowest in April-May (spring). Some taxa were detected all year, such as Chrysochromulina simplex, Emiliania huxleyi and Phaeocystis cordata, whereas most calcifying coccolithophores only appeared from summer to early winter. We also revealed the seasonal dynamics of OTUs representing putative novel classes (clades HAP-3-5) or orders (clades D, E, F). Season, light and temperature accounted for 29% of the variation in OTU composition. Residual variation may be related to biotic factors, such as competition and viral infection. This study provides new, in-depth knowledge on seasonal diversity and dynamics of haptophytes in North Atlantic coastal waters.


Assuntos
Biodiversidade , Haptófitas/classificação , Estações do Ano , Primers do DNA , DNA Ribossômico/genética , Meio Ambiente , Sequenciamento de Nucleotídeos em Larga Escala , Dados de Sequência Molecular , Noruega , Filogenia , RNA Ribossômico 18S/genética , Água do Mar , Análise de Sequência de DNA
6.
Limnol Oceanogr ; 60(2): 360-374, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26074626

RESUMO

A minimum mathematical model of the marine pelagic microbial food web has previously shown to be able to reproduce central aspects of observed system response to different bottom-up manipulations in a mesocosm experiment Microbial Ecosystem Dynamics (MEDEA) in Danish waters. In this study, we apply this model to two mesocosm experiments (Polar Aquatic Microbial Ecology (PAME)-I and PAME-II) conducted at the Arctic location Kongsfjorden, Svalbard. The different responses of the microbial community to similar nutrient manipulation in the three mesocosm experiments may be described as diatom-dominated (MEDEA), bacteria-dominated (PAME-I), and flagellated-dominated (PAME-II). When allowing ciliates to be able to feed on small diatoms, the model describing the diatom-dominated MEDEA experiment give a bacteria-dominated response as observed in PAME I in which the diatom community comprised almost exclusively small-sized cells. Introducing a high initial mesozooplankton stock as observed in PAME-II, the model gives a flagellate-dominated response in accordance with the observed response also of this experiment. The ability of the model originally developed for temperate waters to reproduce population dynamics in a 10°C colder Arctic fjord, does not support the existence of important shifts in population balances over this temperature range. Rather, it suggests a quite resilient microbial food web when adapted to in situ temperature. The sensitivity of the model response to its mesozooplankton component suggests, however, that the seasonal vertical migration of Arctic copepods may be a strong forcing factor on Arctic microbial food webs.

7.
Proc Natl Acad Sci U S A ; 109(47): 19327-32, 2012 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-23134731

RESUMO

Marine viruses are major evolutionary and biogeochemical drivers in marine microbial foodwebs. However, an in-depth understanding of the cellular mechanisms and the signal transduction pathways mediating host-virus interactions during natural bloom dynamics has remained elusive. We used field-based mesocosms to examine the "arms race" between natural populations of the coccolithophore Emiliania huxleyi and its double-stranded DNA-containing coccolithoviruses (EhVs). Specifically, we examined the dynamics of EhV infection and its regulation of cell fate over the course of bloom development and demise using a diverse suite of molecular tools and in situ fluorescent staining to target different levels of subcellular resolution. We demonstrate the concomitant induction of reactive oxygen species, caspase-specific activity, metacaspase expression, and programmed cell death in response to the accumulation of virus-derived glycosphingolipids upon infection of natural E. huxleyi populations. These subcellular responses to viral infection simultaneously resulted in the enhanced production of transparent exopolymer particles, which can facilitate aggregation and stimulate carbon flux. Our results not only corroborate the critical role for glycosphingolipids and programmed cell death in regulating E. huxleyi-EhV interactions, but also elucidate promising molecular biomarkers and lipid-based proxies for phytoplankton host-virus interactions in natural systems.


Assuntos
Linhagem da Célula , Haptófitas/citologia , Haptófitas/virologia , Interações Hospedeiro-Patógeno/fisiologia , Phycodnaviridae/fisiologia , Biopolímeros/biossíntese , Caspases/metabolismo , Ativação Enzimática , Eutrofização , Haptófitas/enzimologia , Noruega , Frações Subcelulares/virologia , Fatores de Tempo
8.
J Microbiol Methods ; 206: 106679, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36720393

RESUMO

Single-cell methods allow studying the activity of single bacterial cells, potentially shedding light on regulatory mechanisms involved in services like biochemical cycling. Bioorthogonal non-canonical amino acid tagging (BONCAT) is a promising method for studying bacterial activity in natural communities, using the methionine analogues L-azidohomoalanine (AHA) and L-homopropargylglycine (HPG) to track protein production in single cells. Both AHA and HPG have been deemed non-toxic, but recent findings suggest that HPG affects bacterial metabolism. In this study we examined the effect of AHA and HPG on Escherichia coli with respect to acute toxicity and growth. E. coli exposed to 5.6-90 µM HPG showed no growth, and the growth rate was significantly reduced at >0.35 µM HPG, compared to the HPG-free control. In contrast, E. coli showed growth at concentrations up to 9 mM AHA. In assays where AHA or HPG were added during the exponential growth phase, the growth sustained but the growth rate was immediately reduced at the highest concentrations (90 µM HPG and 10 mM AHA). Prolonged incubations (20h) with apparently non-toxic concentrations suggest that the cells incorporating NCAAs fail to divide and do not contribute to the next generation resulting in the relative abundance of labelled cells to decrease over time. These results show that HPG and AHA have different impact on the growth of E. coli. Both concentration and incubation time affect the results and need to be considered when designing BONCAT experiments and evaluating results. Time course incubations are suggested as a possible way to obtain more reliable results.


Assuntos
Aminoácidos , Escherichia coli , Aminoácidos/metabolismo , Escherichia coli/metabolismo , Glicina/toxicidade , Proteínas , Bactérias/metabolismo
9.
Viruses ; 15(12)2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-38140573

RESUMO

Phaeoviruses (Phycodnaviridae) are large icosahedral viruses in the phylum Nucleocytoviricota with dsDNA genomes ranging from 160 to 560 kb, infecting multicellular brown algae (Phaeophyceae). The phaeoviral host range is broader than expected, not only infecting algae from the Ectocarpales but also from the Laminariales order. However, despite phaeoviral infections being reported globally, Norwegian kelp species have not been screened. A molecular analysis of cultured and wild samples of two economically important kelp species in Norway (Saccharina latissima and Laminaria hyperborea) revealed that phaeoviruses are recurrently present along the Norwegian coast. We found the viral prevalence in S. latissima to be significantly higher at the present time compared to four years ago. We also observed regional differences within older samples, in which infections were significantly lower in northern areas than in the south or the fjords. Moreover, up to three different viral sequences were found in the same algal individual, one of which does not belong to the Phaeovirus genus and has never been reported before. This master variant therefore represents a putative new member of an unclassified phycodnavirus genus.


Assuntos
Kelp , Phaeophyceae , Phycodnaviridae , Noruega/epidemiologia , Phycodnaviridae/genética
10.
Nat Commun ; 14(1): 510, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36720878

RESUMO

Algal blooms are hotspots of marine primary production and play central roles in microbial ecology and global elemental cycling. Upon demise of the bloom, organic carbon is partly respired and partly transferred to either higher trophic levels, bacterial biomass production or sinking. Viral infection can lead to bloom termination, but its impact on the fate of carbon remains largely unquantified. Here, we characterize the interplay between viral infection and the composition of a bloom-associated microbiome and consequently the evolving biogeochemical landscape, by conducting a large-scale mesocosm experiment where we monitor seven induced coccolithophore blooms. The blooms show different degrees of viral infection and reveal that only high levels of viral infection are followed by significant shifts in the composition of free-living bacterial and eukaryotic assemblages. Intriguingly, upon viral infection the biomass of eukaryotic heterotrophs (thraustochytrids) rivals that of bacteria as potential recyclers of organic matter. By combining modeling and quantification of active viral infection at a single-cell resolution, we estimate that viral infection causes a 2-4 fold increase in per-cell rates of extracellular carbon release in the form of acidic polysaccharides and particulate inorganic carbon, two major contributors to carbon sinking into the deep ocean. These results reveal the impact of viral infection on the fate of carbon through microbial recyclers of organic matter in large-scale coccolithophore blooms.


Assuntos
Eucariotos , Viroses , Humanos , Células Eucarióticas , Bactérias , Carbono
11.
Microorganisms ; 9(11)2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34835503

RESUMO

In the Arctic, seasonal changes are substantial, and as a result, the marine bacterial community composition and functions differ greatly between the dark winter and light-intensive summer. While light availability is, overall, the external driver of the seasonal changes, several internal biological interactions structure the bacterial community during shorter timescales. These include specific phytoplankton-bacteria associations, viral infections and other top-down controls. Here, we uncover these microbial interactions and their effects on the bacterial community composition during a full annual cycle by manipulating the microbial food web using size fractionation. The most profound community changes were detected during the spring, with 'mutualistic phytoplankton'-Gammaproteobacteria interactions dominating in the pre-bloom phase and 'substrate-dependent phytoplankton'-Flavobacteria interactions during blooming conditions. Bacterivores had an overall limited effect on the bacterial community composition most of the year. However, in the late summer, grazing was the main factor shaping the community composition and transferring carbon to higher trophic levels. Identifying these small-scale interactions improves our understanding of the Arctic marine microbial food web and its dynamics.

12.
Front Microbiol ; 12: 772651, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34956134

RESUMO

Bacterial vitality after water disinfection treatment was investigated using bio-orthogonal non-canonical amino acid tagging (BONCAT) and flow cytometry (FCM). Protein synthesis activity and DNA integrity (BONCAT-SYBR Green) was monitored in Escherichia coli monocultures and in natural marine samples after UV irradiation (from 25 to 200 mJ/cm2) and heat treatment (from 15 to 45 min at 55°C). UV irradiation of E. coli caused DNA degradation followed by the decrease in protein synthesis within a period of 24 h. Heat treatment affected both DNA integrity and protein synthesis immediately, with an increased effect over time. Results from the BONCAT method were compared with results from well-known methods such as plate counts (focusing on growth) and LIVE/DEAD™ BacLight™ (focusing on membrane permeability). The methods differed somewhat with respect to vitality levels detected in bacteria after the treatments, but the results were complementary and revealed that cells maintained metabolic activity and membrane integrity despite loss of cell division. Similarly, analysis of protein synthesis in marine bacteria with BONCAT displayed residual activity despite inability to grow or reproduce. Background controls (time zero blanks) prepared using different fixatives (formaldehyde, isopropanol, and acetic acid) and several different bacterial strains revealed that the BONCAT protocol still resulted in labeled, i.e., apparently active, cells. The reason for this is unclear and needs further investigation to be understood. Our results show that BONCAT and FCM can detect, enumerate, and differentiate bacterial cells after physical water treatments such as UV irradiation and heating. The method is reliable to enumerate and explore vitality of single cells, and a great advantage with BONCAT is that all proteins synthesized within cells are analyzed, compared to assays targeting specific elements such as enzyme activity.

13.
Front Microbiol ; 11: 1929, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33013733

RESUMO

In this study, we have combined bioorthogonal non-canonical amino acid tagging (BONCAT) and flow cytometry (FCM) analysis, and we demonstrate the applicability of the method for marine prokaryotes. Enumeration of active marine bacteria was performed by combining the DNA stain SYBR Green with detection of protein production with BONCAT. After optimization of incubation condition and substrate concentration on monoculture of Escherichia coli, we applied and modified the method to natural marine samples. We found that between 10 and 30% of prokaryotes in natural communities were active. The method is replicable, fast, and allow high sample throughput when using FCM. We conclude that the combination of BONCAT and FCM is an alternative to current methods for quantifying active populations in aquatic environments.

14.
Mar Pollut Bull ; 149: 110528, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31470209

RESUMO

In this study, we used flow cytometry to examine how incubation in dark versus light affects the vitality and viability of UV-irradiated Tetraselmis suecica. High UV doses (300 and 400 mJ/cm2) affected the esterase activity, membrane permeability, and chlorophyll content more when the subsequent incubation took place in light. For non- or low UV dose (100 and 200 mJ/cm2)-treated cells, incubation in light resulted in cell regrowth as compared to incubation in dark. Damaged cells (enzymatically active but with permeable membranes) did not recover when incubated under light or dark conditions. Exposure to light reduces the evaluation time of any given ballast water treatment, as viable cells will be detected at an earlier stage and the vitality is more affected. When evaluating the performance of UV-based ballast water treatment systems (BWTS), these results can be useful for type approval using T. suecica as a test organism in the test regime.


Assuntos
Clorófitas/fisiologia , Clorófitas/efeitos da radiação , Purificação da Água/métodos , Clorofila/metabolismo , Escuridão , Relação Dose-Resposta à Radiação , Esterases/metabolismo , Citometria de Fluxo/métodos , Fluoresceínas , Luz , Fitoplâncton/fisiologia , Fitoplâncton/efeitos da radiação , Raios Ultravioleta
15.
ISME J ; 13(10): 2566-2577, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31235841

RESUMO

Sea ice is a crucial component of the Arctic climate system, yet the tools to document the evolution of sea ice conditions on historical and geological time scales are few and have limitations. Such records are essential for documenting and understanding the natural variations in Arctic sea ice extent. Here we explore sedimentary ancient DNA (aDNA), as a novel tool that unlocks and exploits the genetic (eukaryote) biodiversity preserved in marine sediments specifically for past sea ice reconstructions. Although use of sedimentary aDNA in paleoceanographic and paleoclimatic studies is still in its infancy, we use here metabarcoding and single-species quantitative DNA detection methods to document the sea ice conditions in a Greenland Sea marine sediment core. Metabarcoding has allowed identifying biodiversity changes in the geological record back to almost ~100,000 years ago that were related to changing sea ice conditions. Detailed bioinformatic analyses on the metabarcoding data revealed several sea-ice-associated taxa, most of which previously unknown from the fossil record. Finally, we quantitatively traced one known sea ice dinoflagellate in the sediment core. We show that aDNA can be recovered from deep-ocean sediments with generally oxic bottom waters and that past sea ice conditions can be documented beyond instrumental time scales. Our results corroborate sea ice reconstructions made by traditional tools, and thus demonstrate the potential of sedimentary aDNA, focusing primarily on microbial eukaryotes, as a new tool to better understand sea ice evolution in the climate system.


Assuntos
DNA Antigo/análise , Eucariotos/genética , Sedimentos Geológicos/química , Camada de Gelo/química , Regiões Árticas , Biodiversidade , Clima , Eucariotos/isolamento & purificação , Fósseis , Groenlândia
16.
Viruses ; 10(12)2018 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-30558156

RESUMO

The Arctic marine environment experiences dramatic seasonal changes in light and nutrient availability. To investigate the influence of seasonality on Arctic marine virus communities, five research cruises to the west and north of Svalbard were conducted across one calendar year, collecting water from the surface to 1000 m in depth. We employed metabarcoding analysis of major capsid protein g23 and mcp genes in order to investigate T4-like myoviruses and large dsDNA viruses infecting prokaryotic and eukaryotic picophytoplankton, respectively. Microbial abundances were assessed using flow cytometry. Metabarcoding results demonstrated that seasonality was the key mediator shaping virus communities, whereas depth exerted a diversifying effect within seasonal virus assemblages. Viral diversity and virus-to-prokaryote ratios (VPRs) dropped sharply at the commencement of the spring bloom but increased across the season, ultimately achieving the highest levels during the winter season. These findings suggest that viral lysis may be an important process during the polar winter, when productivity is low. Furthermore, winter viral communities consisted of Operational Taxonomic Units (OTUs) distinct from those present during the spring-summer season. Our data provided a first insight into the diversity of viruses in a hitherto undescribed marine habitat characterized by extremes in light and productivity.


Assuntos
Ecossistema , Eucariotos/virologia , Microbiota , Células Procarióticas/virologia , Estações do Ano , Regiões Árticas , Biodiversidade , Código de Barras de DNA Taxonômico , Vírus de DNA/genética , Eucariotos/fisiologia , Citometria de Fluxo , Myoviridae/genética , Fitoplâncton/virologia , Células Procarióticas/fisiologia , Água do Mar/virologia
17.
ISME J ; 12(11): 2694-2705, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29991763

RESUMO

Combining a minimum food web model with Arctic microbial community dynamics, we have suggested that top-down control by copepods can affect the food web down to bacterial consumption of organic carbon. Pursuing this hypothesis further, we used the minimum model to design and analyse a mesocosm experiment, studying the effect of high (+Z) and low (-Z) copepod density on resource allocation, along an organic-C addition gradient. In the Arctic, both effects are plausible due to changes in advection patterns (affecting copepods) and meltwater inputs (affecting carbon). The model predicts a trophic cascade from copepods via ciliates to flagellates, which was confirmed experimentally. Auto- and heterotrophic flagellates affect bacterial growth rate and abundance via competition for mineral nutrients and predation, respectively. In +Z, the model predicts low bacterial abundance and activity, and little response to glucose; as opposed to clear glucose consumption effects in -Z. We observed a more resilient bacterial response to high copepods and demonstrate this was due to changes in bacterial community equitability. Species able to use glucose to improve their competitive and/or defensive properties, became predominant. The observed shift from a SAR11-to a Psychromonodaceae - dominated community suggests the latter was pivotal in this modification of ecosystem function. We argue that this group used glucose to improve its defensive or its competitive abilities (or both). Adding such flexibility in bacterial traits to the model, we show how it creates the observed resilience to top-down manipulations observed in our experiment.


Assuntos
Fenômenos Fisiológicos Bacterianos , Copépodes/fisiologia , Cadeia Alimentar , Animais , Regiões Árticas , Processos Autotróficos , Bactérias/crescimento & desenvolvimento , Bactérias/isolamento & purificação , Bactérias/metabolismo , Carbono/metabolismo , Cilióforos/fisiologia , Glucose/metabolismo , Processos Heterotróficos , Microbiota
19.
Viruses ; 9(3)2017 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-28327527

RESUMO

Viruses are thought to be fundamental in driving microbial diversity in the oceanic planktonic realm. That role and associated emerging infection patterns remain particularly elusive for eukaryotic phytoplankton and their viruses. Here we used a vast number of strains from the model system Emiliania huxleyi/Emiliania huxleyi Virus to quantify parameters such as growth rate (µ), resistance (R), and viral production (Vp) capacities. Algal and viral abundances were monitored by flow cytometry during 72-h incubation experiments. The results pointed out higher viral production capacity in generalist EhV strains, and the virus-host infection network showed a strong co-evolution pattern between E. huxleyi and EhV populations. The existence of a trade-off between resistance and growth capacities was not confirmed.


Assuntos
Haptófitas/virologia , Interações Hospedeiro-Parasita , Phycodnaviridae/crescimento & desenvolvimento , Fitoplâncton/virologia , Contagem de Células , Citometria de Fluxo , Carga Viral
20.
Viruses ; 9(4)2017 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-28425942

RESUMO

Viruses influence the ecology and diversity of phytoplankton in the ocean. Most studies of phytoplankton host-virus interactions have focused on bloom-forming species like Emiliania huxleyi or Phaeocystis spp. The role of viruses infecting phytoplankton that do not form conspicuous blooms have received less attention. Here we explore the dynamics of phytoplankton and algal viruses over several sequential seasons, with a focus on the ubiquitous and diverse phytoplankton division Haptophyta, and their double-stranded DNA viruses, potentially with the capacity to infect the haptophytes. Viral and phytoplankton abundance and diversity showed recurrent seasonal changes, mainly explained by hydrographic conditions. By 454 tag-sequencing we revealed 93 unique haptophyte operational taxonomic units (OTUs), with seasonal changes in abundance. Sixty-one unique viral OTUs, representing Megaviridae and Phycodnaviridae, showed only distant relationship with currently isolated algal viruses. Haptophyte and virus community composition and diversity varied substantially throughout the year, but in an uncoordinated manner. A minority of the viral OTUs were highly abundant at specific time-points, indicating a boom-bust relationship with their host. Most of the viral OTUs were very persistent, which may represent viruses that coexist with their hosts, or able to exploit several host species.


Assuntos
Haptófitas/crescimento & desenvolvimento , Haptófitas/virologia , Interações Hospedeiro-Parasita , Phycodnaviridae/crescimento & desenvolvimento , Biodiversidade , Densidade Demográfica , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA