Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant Cell Environ ; 31(10): 1388-98, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18643953

RESUMO

It is well established that phosphate deficiency induces the replacement of membrane phospholipid with non-phosphorous lipids in extra-plastidial membranes (e.g. plasma membrane, tonoplast, mitochondria). The predominant replacement lipid is digalactosyl diacylglycerol (DGDG). This paper reports that the phospholipid-to-DGDG replacement is reversible, and that when oat seedlings are re-supplied with radio-labelled phosphate, it is initially recovered primarily in phosphatidylcholine (PC). Within 2 d, the shoot contains more than half of the lipid-associated radiolabel, reflecting phosphate translocation. Oat was also cultivated in different concentrations of phosphate and the DGDG/PC ratio in roots and phospholipase activities in isolated plasma membranes was assayed after different times of cultivation. The DGDG/PC ratio in root tissue correlated more closely with plasma membrane-localized phospholipase D, yielding phosphatidic acid (PA), than with plasma membrane-localized PA phosphatase, the activity that results in a decreased proportion of phospolipids. The lipid degradation data did not reflect a significant involvement of phospholipase C, although a putative phospholipase C analogue, non-specific phospholipase C4 (NPC4), was present in oat roots. The correlation between increased phospholipase D activity and DGDG/PC ratio is consistent with a model where phospholipid-to-DGDG replacement involves formation of PA that readily is removed from the plasma membrane for further degradation elsewhere.


Assuntos
Avena/metabolismo , Membrana Celular/metabolismo , Galactolipídeos/metabolismo , Fosfatos/metabolismo , Ácidos Fosfatídicos/metabolismo , Avena/química , Fertilizantes , Fosfatidilcolinas/metabolismo , Fosfolipases/metabolismo , Sulfatos/metabolismo
2.
BMC Plant Biol ; 7: 64, 2007 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-18045483

RESUMO

BACKGROUND: The phospholipids of the plant plasma membrane are synthesized in the endoplasmic reticulum (ER). The majority of these lipids reach the plasma membrane independently of the secretory vesicular pathway. Phospholipid delivery to the mitochondria and chloroplasts of plant cells also bypasses the secretory pathway and here it has been proposed that lysophospholipids are transported at contact sites between specific regions of the ER and the respective organelle, followed by lysophospholipid acylation in the target organelle. To test the hypothesis that a corresponding mechanism operates to transport phospholipids to the plasma membrane outside the secretory pathway, we investigated whether lysolipid acylation occurs also in the plant plasma membrane and whether this membrane, like the chloroplasts and mitochondria, is in close contact with the ER. RESULTS: The plant plasma membrane readily incorporated the acyl chain of acyl-CoA into phospholipids. Oleic acid was preferred over palmitic acid as substrate and acyl incorporation occurred predominantly into phosphatidylcholine (PC). Phospholipase A2 stimulated the reaction, as did exogenous lysoPC when administered in above critical micellar concentrations. AgNO3 was inhibitory. The lysophospholipid acylation reaction was higher in a membrane fraction that could be washed off the isolated plasma membranes after repeated freezing and thawing cycles in a medium with lowered pH. This fraction exhibited several ER-like characteristics. When plasma membranes isolated from transgenic Arabidopsis expressing green fluorescent protein in the ER lumen were observed by confocal microscopy, membranes of ER origin were associated with the isolated plasma membranes. CONCLUSION: We conclude that a lysoPC acylation activity is associated with plant plasma membranes and cannot exclude a PC transacylase activity. It is highly plausible that the enzyme(s) resides in a fraction of the ER, closely associated with the plasma membrane, or in both. We suggest that this fraction might be the equivalent of the mitochondria associated membrane of ER origin that delivers phospholipids to the mitochondria, and to the recently isolated ER-derived membrane fraction that is in close contact with chloroplasts. The in situ function of the lysoPC acylation/PC transacylase activity is unknown, but involvement in lipid delivery from the ER to the plasma membrane is suggested.


Assuntos
1-Acilglicerofosfocolina O-Aciltransferase/metabolismo , Arabidopsis/enzimologia , Membrana Celular/enzimologia , Retículo Endoplasmático/enzimologia , Fosfolipídeos/metabolismo , Acilação , Microscopia Confocal , Peptídeos/metabolismo
3.
Plant Physiol Biochem ; 44(4): 211-9, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16762557

RESUMO

During acclimation to drought stress, the lipid composition of oat root cell membranes is altered. The level of phosphatidylethanolamine (PE), a non-bilayer forming lipid, is increased relative to the bilayer-forming lipid phosphatidylcholine (PC). These changes are believed to increase stress tolerance by increasing the flexibility of the membranes. To elucidate if de novo lipid synthesis is involved in altering membrane lipid composition, oat plants, acclimated or non-acclimated, were incubated in vivo with radioactively labelled lipid precursors. The labelling pattern indicated that de novo synthesis, at least partly, is causing the alterations. In plants, phospholipids can be synthesized by the Kennedy pathway, with addition of activated head groups to diacylglycerol (DAG) or, alternatively, via the CDP-DAG pathway, where phospahtidylserine (PS) is decarboxylated to form PE. To reveal the importance of the respective pathways during acclimation, we studied the effect of a decarboxylase inhibitor and the relative incorporation of [(3)H]-serine and [(14)C]-ethanolamine in vivo. Activities of CTP:ethanolaminephosphate cytidyltransferase (EC 2.7.7.14), phosphatidylserine decarboxylase (EC 4.1.1.65) and phosphatidylserine synthase; CDP-DAG:L-serine o-phosphatidyltransferase (EC 2.7.8.8) were measured and additionally, the presence of a PS decarboxylase (PSD1) in oat was confirmed by immunoblotting. The results suggest that PE synthesis via the Kennedy pathway is downregulated during acclimation and that synthesis by PS decarboxylation, via the CDP-DAG pathway, is increased, mainly through an increased activity of PS synthase.


Assuntos
Aclimatação/fisiologia , Avena/enzimologia , Carboxiliases/metabolismo , Membrana Celular/metabolismo , Fosfolipídeos/metabolismo , Raízes de Plantas/enzimologia , Água/metabolismo , Avena/citologia , Carboxiliases/genética , Dessecação , Desastres , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Metabolismo dos Lipídeos , Raízes de Plantas/citologia , Fatores de Tempo
4.
Biochim Biophys Acta ; 1682(1-3): 11-7, 2004 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-15158751

RESUMO

Exposure of oat seedlings to repeated moderate water deficit stress causes a drought acclimation of the seedlings. This acclimation is associated with changes in the lipid composition of the plasma membrane of root cells. Here, plasma membranes from root cells of acclimated and control plants were isolated using the two-phase partitioning method. Membrane vesicles were prepared of total lipids extracted from the plasma membranes. In a series of tests the vesicle permeability for glucose and for protons were analysed and compared with the permeability of model vesicles. Further, the importance of critical components for the permeability properties was analysed by modifying the lipid composition of the vesicles from acclimated and from control plants. The purpose was to add specific lipids to vesicles from acclimated plants to mimic the composition of the vesicles from control plants and vice versa. The plasma membrane lipid vesicles from acclimated plants had a significantly increased permeability for glucose and decreased permeability for protons as compared to control vesicles. The results point to the importance of the ratio phosphatidylcholine (PC)/phosphatidylethanolamine (PE), the levels of cerebrosides and free sterols and the possible interaction of these components for the plasma membrane as a permeability barrier.


Assuntos
Avena/metabolismo , Membrana Celular/metabolismo , Permeabilidade , Membrana Celular/química , Desidratação/metabolismo , Glucose/metabolismo , Prótons
5.
FEBS Lett ; 537(1-3): 128-32, 2003 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-12606044

RESUMO

The plasma membranes of oat normally resemble those of other eukaryotes in containing mainly phospholipids and sterols. We here report the novel finding that the galactolipid digalactosyldiacylglycerol (DGDG) can constitute a substantial proportion of oat plasma membrane lipids, in both shoots and roots. When oat was cultivated under severe phosphate limitation, up to 70% of the plasma membrane phosphoglycerolipids were replaced by DGDG. Our finding not only reflects a far more developed potential for plasticity in plasma membrane lipid composition than often assumed, but also merits interest in the context of the limited phosphate availability in many soils.


Assuntos
Avena/metabolismo , Membrana Celular/metabolismo , Galactolipídeos/metabolismo , Lipídeos de Membrana/metabolismo , Fosfatos/deficiência , Fosfatos/metabolismo , Fosfolipídeos/metabolismo , Cinética , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo
6.
J Biol Chem ; 280(30): 27578-86, 2005 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-15927962

RESUMO

We recently reported that cultivation of oat (Avena sativa L.) without phosphate resulted in plasma membrane phosphoglycerolipids being replaced to a large extent by digalactosyldiacylglycerol (DGDG) (Andersson, M. X., Stridh, M. H., Larsson, K. E., Liljenberg, C., and Sandelius, A. S. (2003) FEBS Lett. 537, 128-132). We report here that DGDG is not the only non-phosphorous-containing lipid that replaces phospholipids but that also the content of glucosylceramides and sterolglycosides increased in plasma membranes as a response to phosphate starvation. In addition, phosphate deficiency induced similar changes in lipid composition in the tonoplast. The phospholipid-to-glycolipid replacement apparently did not occur to any greater extent in endoplasmic reticulum, Golgi apparatus, or mitochondrial inner membranes. In contrast to the marked effects on lipid composition, the polypeptide patterns were largely similar between root plasma membranes from well-fertilized and phosphate-limited oat, although the latter condition induced at least four polypeptides, including a chaperone of the HSP80 or HSP90 family, a phosphate transporter, and a bacterial-type phosphoesterase. The latter polypeptide reacted with an antibody raised against a phosphate deficiency-induced phospholipase C from Arabidopsis thaliana (Nakamura, Y., Awai, K., Masuda, T., Yoshioka, Y., Takamiya, K., and Ohta, H. (2005) J. Biol. Chem. 280, 7469-7476). In plasma membranes from oat, however, a phospholipase D-type activity and a phosphatidic acid phosphatase were the dominant lipase activities induced by phosphate deficiency. Our results reflect a highly developed plasticity in the lipid composition of the plasma membrane and the tonoplast. In addition, phosphate deficiency-induced alterations in plasma membrane lipid composition may involve different sets of lipid-metabolizing enzymes in different plant tissues or species, at different stages of plant development and/or at different stages of stress adjustments.


Assuntos
Avena/metabolismo , Membrana Celular/metabolismo , Glicolipídeos/metabolismo , Fosfolipídeos/metabolismo , Raízes de Plantas/metabolismo , Sequência de Aminoácidos , Ácidos Graxos/metabolismo , Galactolipídeos/metabolismo , Glucosilceramidas/metabolismo , Complexo de Golgi/metabolismo , Metabolismo dos Lipídeos , Microssomos/metabolismo , Dados de Sequência Molecular , Peptídeos/química , Fosfatos/metabolismo , Fosfolipases/química , Homologia de Sequência de Aminoácidos , Dodecilsulfato de Sódio/farmacologia , Esteróis/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA