Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Science ; 385(6706): 322-327, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-38963876

RESUMO

One of Earth's most fundamental climate shifts, the greenhouse-icehouse transition 34 million years ago, initiated Antarctic ice sheet buildup, influencing global climate until today. However, the extent of the ice sheet during the Early Oligocene Glacial Maximum (~33.7 to 33.2 million years ago) that immediately followed this transition-a critical knowledge gap for assessing feedbacks between permanently glaciated areas and early Cenozoic global climate reorganization-is uncertain. In this work, we present shallow-marine drilling data constraining earliest Oligocene environmental conditions on West Antarctica's Pacific margin-a key region for understanding Antarctic ice sheet evolution. These data indicate a cool-temperate environment with mild ocean and air temperatures that prevented West Antarctic Ice Sheet formation. Climate-ice sheet modeling corroborates a highly asymmetric Antarctic ice sheet, thereby revealing its differential regional response to past and future climatic change.

2.
Sci Adv ; 7(15)2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33837074

RESUMO

Thwaites Glacier is the most rapidly changing outlet of the West Antarctic Ice Sheet and adds large uncertainty to 21st century sea-level rise predictions. Here, we present the first direct observations of ocean temperature, salinity, and oxygen beneath Thwaites Ice Shelf front, collected by an autonomous underwater vehicle. On the basis of these data, pathways and modification of water flowing into the cavity are identified. Deep water underneath the central ice shelf derives from a previously underestimated eastern branch of warm water entering the cavity from Pine Island Bay. Inflow of warm and outflow of melt-enriched waters are identified in two seafloor troughs to the north. Spatial property gradients highlight a previously unknown convergence zone in one trough, where different water masses meet and mix. Our observations show warm water impinging from all sides on pinning points critical to ice-shelf stability, a scenario that may lead to unpinning and retreat.

3.
Science ; 343(6174): 999-1001, 2014 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-24557837

RESUMO

Pine Island Glacier, a major outlet of the West Antarctic Ice Sheet, has been undergoing rapid thinning and retreat for the past two decades. We demonstrate, using glacial-geological and geochronological data, that Pine Island Glacier (PIG) also experienced rapid thinning during the early Holocene, around 8000 years ago. Cosmogenic (10)Be concentrations in glacially transported rocks show that this thinning was sustained for decades to centuries at an average rate of more than 100 centimeters per year, which is comparable with contemporary thinning rates. The most likely mechanism was a reduction in ice shelf buttressing. Our findings reveal that PIG has experienced rapid thinning at least once in the past and that, once set in motion, rapid ice sheet changes in this region can persist for centuries.


Assuntos
Camada de Gelo , Ilhas , Berílio/análise , Movimento (Física) , Radioisótopos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA