Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Card Fail ; 26(10): 876-884, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32446948

RESUMO

Heart failure (HF) has traditionally been defined by symptoms of fluid accumulation and poor perfusion, but it is now recognized that specific HF classifications hold prognostic and therapeutic relevance. Specifically, HF with reduced ejection fraction is characterized by reduced left ventricular systolic pump function and dilation and HF with preserved ejection fraction is characterized primarily by abnormal left ventricular filling (diastolic failure) with relatively preserved left ventricular systolic function. These forms of HF are distributed equally among patients with HF and likely require distinctly different strategies to mitigate the morbidity, mortality, and medical resource utilization of this disease. In particular, HF is a significant medical issue within the US Department of Veterans Affairs (VA) hospital system and constitutes a major translational research priority for the VA. Because a common underpinning of both HF with reduced ejection fraction and HF with preserved ejection fraction seems to be changes in the structure and function of the myocardial extracellular matrix, a conference was convened sponsored by the VA, entitled, "Targeting Myocardial Fibrosis in Heart Failure" to explore the extracellular matrix as a potential therapeutic target and to propose specific research directions. The conference was conceptually framed around the hypothesis that although HF with reduced ejection fraction and HF with preserved ejection fraction clearly have distinct mechanisms, they may share modifiable pathways and biological mediators in common. Inflammation and extracellular matrix were identified as major converging themes. A summary of our discussion on unmet challenges and possible solutions to move the field forward, as well as recommendations for future research opportunities, are provided.


Assuntos
Insuficiência Cardíaca , Disfunção Ventricular Esquerda , Diástole , Fibrose , Insuficiência Cardíaca/epidemiologia , Insuficiência Cardíaca/terapia , Humanos , Volume Sistólico , Função Ventricular Esquerda
2.
Ann Vasc Surg ; 46: 193-204, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29107003

RESUMO

BACKGROUND: Hypertension (HTN) has long been associated with abdominal aortic aneurysm (AAA) development, and these cardiovascular pathologies are biochemically characterized by elevated plasma levels of angiotensin II (AngII) as well as interleukin-6 (IL-6). A biologic relationship between HTN and AAA has not been established, however. Accordingly, the objective of this study was to evaluate whether elevated tension may initiate IL-6 production to accumulate monocyte/macrophages and promote dilation of the abdominal aorta (AA). METHODS: An IL-6 infusion model (4.36 µg/kg/day) was created utilizing an osmotic infusion pump, and after 4 weeks, AA diameter was measured by digital microscopy. The AA was then excised for CD68 immunostaining and flow cytometric analysis with CD11b and F4/80 to identify macrophages. Aortic segments from wild-type mice were suspended on parallel wires in an ex vivo tissue myograph at experimentally derived optimal tension (1.2 g) and in the presence of elevated tension (ET, 1.7 g) for 3 hr, and expression of IL-6 and monocyte chemoattractant protein-1 (MCP-1) was evaluated by quantitative polymerase chain reaction (QPCR). Isolated aortic vascular smooth muscle cells (VSMCs) were subjected to 12% biaxial cyclic stretch or held static (control) for 3 hr (n = 7), and IL-6 and MCP-1 expressions were evaluated by QPCR. RESULTS: Four-week IL-6 infusion resulted in an AA outer diameter that was 72.5 ± 5.6% (P < 0.05) greater than that of control mice, and aortic dilation was accompanied by an accumulation of macrophages in the AA medial layer as defined by an increase in CD68 + staining as well as an increase by flow cytometric quantification of CD11b+/F4/80+ cells. Wild-type AA segments did not respond to ex vivo application of ET but cyclic stretch of isolated VSMCs increased IL-6 (2.03 ± 0.3 fold) and MCP-1 (1.51 ± 0.11 fold) expression compared to static control (P < 0.05). Pretreatment with the selective STAT3 inhibitor WP1066 blunted the response in both cases. Interestingly, AngII did not stimulate expression of IL-6 and MCP-1 above that initiated by tension and again, the response was inhibited by WP1066, supporting an integral role of STAT3 in this pathway. CONCLUSIONS: An IL-6 infusion model can initiate macrophage accumulation as well as aortic dilation, and under conditions of elevated tension, this proinflammatory cytokine can be produced by aortic VSMCs. By activation of STAT3, MCP-1 is expressed to increase media macrophage abundance and create an environment susceptible to dilation. This biomechanical association between HTN and aortic dilation may allow for the identification of novel therapeutic strategies.


Assuntos
Aorta Abdominal/metabolismo , Aneurisma da Aorta Abdominal/metabolismo , Pressão Arterial , Interleucina-6/metabolismo , Angiotensina II , Animais , Antígenos CD/metabolismo , Antígenos de Diferenciação/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Aorta Abdominal/patologia , Aorta Abdominal/fisiopatologia , Aneurisma da Aorta Abdominal/induzido quimicamente , Aneurisma da Aorta Abdominal/patologia , Aneurisma da Aorta Abdominal/fisiopatologia , Antígeno CD11b/metabolismo , Células Cultivadas , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Dilatação Patológica , Modelos Animais de Doenças , Feminino , Interleucina-6/genética , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Mecanotransdução Celular , Camundongos , Monócitos/metabolismo , Monócitos/patologia , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Fosforilação , Fator de Transcrição STAT3/metabolismo , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA