Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Anal Chem ; 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38321595

RESUMO

Mass spectrometry imaging (MSI) is widely used for examining the spatial distributions of molecules in biological samples. Conventional MSI approaches, in which molecules extracted from the sample are distinguished based on their mass-to-charge ratio, cannot distinguish between isomeric species and some closely spaced isobars. To facilitate isobar separation, MSI is typically performed using high-resolution mass spectrometers. Nevertheless, the complexity of the mixture of biomolecules observed in each pixel of the image presents a challenge, even for modern mass spectrometers with the highest resolving power. Herein, we implement nanospray desorption electrospray ionization (nano-DESI) MSI on a triple quadrupole (QqQ) mass spectrometer for the spatial mapping of isobaric and isomeric species in biological tissues. We use multiple reaction monitoring acquisition mode (MRM) with unit mass resolution to demonstrate the performance of this new platform by imaging lipids in mouse brain and rat kidney tissues. We demonstrate that imaging in MRM mode may be used to distinguish between isobaric phospholipids requiring a mass resolving power of 3,800,000. Additionally, we have been able to image eicosanoid isomers, a largely unexplored class of signaling molecules present in tissues at low concentrations, in rat kidney tissue. This new capability substantially enhances the specificity and selectivity of MSI, enabling spatial localization of species that remain unresolved in conventional MSI experiments.

2.
Small ; : e2311585, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38576110

RESUMO

The incorporation of redox-active species into the electric double layer is a powerful strategy for enhancing the energy density of supercapacitors. Polyoxometalates (POM) are a class of stable, redox-active species with multielectron activity, which is often used to tailor the properties of electrochemical interfaces. Traditional synthetic methods often result in interfaces containing a mixture of POM anions, unreactive counter ions, and neutral species. This leads to degradation in electrochemical performance due to aggregation and increased interfacial resistance. Another significant challenge is achieving the uniform and stable anchoring of POM anions on substrates to ensure the long-term stability of the electrochemical interface. These challenges are addressed by developing a mass spectrometry-based subambient deposition strategy for the selective deposition of POM anions onto engineered 3D porous carbon electrodes. Furthermore, positively charged functional groups are introduced on the electrode surface for efficient trapping of POM anions. This approach enables the deposition of purified POM anions uniformly through the pores of the 3D porous carbon electrode, resulting in unprecedented increase in the energy storage capacity of the electrodes. The study highlights the critical role of well-defined electrochemical interfaces in energy storage applications and offers a powerful method to achieve this through selective ion deposition.

3.
Cell Commun Signal ; 22(1): 141, 2024 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383396

RESUMO

BACKGROUND: Lipids are regulators of insulitis and ß-cell death in type 1 diabetes development, but the underlying mechanisms are poorly understood. Here, we investigated how the islet lipid composition and downstream signaling regulate ß-cell death. METHODS: We performed lipidomics using three models of insulitis: human islets and EndoC-ßH1 ß cells treated with the pro-inflammatory cytokines interlukine-1ß and interferon-γ, and islets from pre-diabetic non-obese mice. We also performed mass spectrometry and fluorescence imaging to determine the localization of lipids and enzyme in islets. RNAi, apoptotic assay, and qPCR were performed to determine the role of a specific factor in lipid-mediated cytokine signaling. RESULTS: Across all three models, lipidomic analyses showed a consistent increase of lysophosphatidylcholine species and phosphatidylcholines with polyunsaturated fatty acids and a reduction of triacylglycerol species. Imaging assays showed that phosphatidylcholines with polyunsaturated fatty acids and their hydrolyzing enzyme phospholipase PLA2G6 are enriched in islets. In downstream signaling, omega-3 fatty acids reduce cytokine-induced ß-cell death by improving the expression of ADP-ribosylhydrolase ARH3. The mechanism involves omega-3 fatty acid-mediated reduction of the histone methylation polycomb complex PRC2 component Suz12, upregulating the expression of Arh3, which in turn decreases cell apoptosis. CONCLUSIONS: Our data provide insights into the change of lipidomics landscape in ß cells during insulitis and identify a protective mechanism by omega-3 fatty acids. Video Abstract.


Assuntos
Ácidos Graxos Ômega-3 , Ilhotas Pancreáticas , N-Glicosil Hidrolases , Camundongos , Animais , Humanos , Ilhotas Pancreáticas/metabolismo , Morte Celular , Citocinas/metabolismo , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Insaturados , Fosfatidilcolinas/metabolismo
4.
Angew Chem Int Ed Engl ; 63(18): e202401465, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38346013

RESUMO

Recently, solution-processable n-doped poly(benzodifurandione) (n-PBDF) has been made through in-situ oxidative polymerization and reductive doping, which exhibited exceptionally high electrical conductivities and optical transparency. The discovery of n-PBDF is considered a breakthrough in the field of organic semiconductors. In the initial report, the possibility of structural defect formation in n-PBDF was proposed, based on the observation of structural isomerization from (E)-2H,2'H-[3,3'-bibenzofuranylidene]-2,2'-dione (isoxindigo) to chromeno[4,3-c]chromene-5,11-dione (dibenzonaphthyrone) in the dimer model reactions. In this study, we present clear evidence that structural isomerization is inhibited during polymerization. We reveal that the dimer (BFD1) and the trimer (BFD2) can be reductively doped by several mechanisms, including hydride transfer, forming charge transfer complexes (CTC) or undergoing an integer charge transfer (ICT) with reactants available during polymerization. Once the hydride transfer adducts, the CTC, or the ICT product forms, structural isomerization can be effectively prevented even at elevated temperatures. Our findings provide a mechanistic understanding of why isomerization-derived structural defects are absent in n-PBDF backbone. It lays a solid foundation for the future development of n-PBDF as a benchmark polymer for organic electronics and beyond.

5.
J Mass Spectrom ; 59(7): e5065, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38866597

RESUMO

Nanospray desorption electrospray ionization (nano-DESI) is an ambient ionization mass spectrometry imaging (MSI) approach that enables spatial mapping of biological and environmental samples with high spatial resolution and throughput. Because nano-DESI has not yet been commercialized, researchers develop their own sources and interface them with different commercial mass spectrometers. Previously, several protocols focusing on the fabrication of nano-DESI probes have been reported. In this tutorial, we discuss different hardware requirements for coupling the nano-DESI source to commercial mass spectrometers, such as the safety interlock, inlet extension, and contact closure. In addition, we describe the structure of our custom software for controlling the nano-DESI MSI platform and provide detailed instructions for its usage. With this tutorial, interested researchers should be able to implement nano-DESI experiments in their labs.

6.
Chem Sci ; 15(28): 10770-10783, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39027285

RESUMO

Transition metal (TM) complexes are widely used in catalysis, photochemical energy conversion, and sensing. Understanding factors that affect ligand loss from TM complexes at interfaces is important both for generating catalytically-active undercoordinated TM complexes and for controlling the degradation pathways of photosensitizers and photoredox catalysts. Herein, we demonstrate that well-defined TM complexes prepared on surfaces using ion soft landing undergo substantial structural rearrangements resulting in ligand loss and formation of both stable and reactive undercoordinated species. We employ nickel bipyridine (Ni-bpy) cations as a model system and explore their structural reorganization on surfaces using a combination of experimental and computational approaches. The controlled preparation of surface layers by mass-selected deposition of [Ni(bpy)3]2+ cations provides insights into the chemical reactivity of these species on surfaces. Both surface characterization using mass spectrometry and electronic structure calculations using density functional theory (DFT) indicate that [Ni(bpy)3]2+ undergoes a substantial geometry distortion on surfaces in comparison with its gas-phase structure. This distortion reduces the ligand binding energy and facilitates the formation of the undercoordinated [Ni(bpy)2]2+. Additionally, charge reduction by the soft landed [Ni(bpy)3]2+ facilitates ligand loss. We observe that ligand loss is inhibited by co-depositing [Ni(bpy)3]2+ with a stable anion such as closo-dodecaborate dianion, [B12F12]2-. The strong electrostatic interaction between [Ni(bpy)3]2+ and [B12F12]2- diminishes the distortion of the cation due to interactions with the surface. This interaction stabilizes the soft landed cation by reducing the extent of charge reduction and its structural reorganization. Overall, this study shows the intricate interplay of charge state, ion surface interactions, and stabilization by counterions on the structure and reactivity of metal complexes on surfaces. The combined experimental and computational approach used in this study offers detailed insights into factors that affect the integrity and stability of active species relevant to energy production and catalysis.

7.
Chem Sci ; 15(30): 11825-11836, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39092096

RESUMO

Harnessing flexible host cavities opens opportunities for the design of novel supramolecular architectures that accommodate nanosized guests. This research examines unprecedented gas-phase structures of Keggin-type polyoxometalate PW12O40 3- (WPOM) and cyclodextrins (X-CD, X = α, ß, γ, δ, ε, ζ) including previously unexplored large, flexible CDs. Using ion mobility spectrometry coupled to mass spectrometry (IM-MS) in conjunction with molecular dynamics (MD) simulations, we provide first insights into the binding modes between WPOM and larger CD hosts as isolated structures. Notably, γ-CD forms two distinct structures with WPOM through binding to its primary and secondary faces. We also demonstrate that ε-CD forms a deep inclusion complex, which encapsulates WPOM within its annular inner cavity. In contrast, ζ-CD adopts a saddle-like conformation in its complex with WPOM, which resembles its free form in solution. More intriguingly, the gas-phase CD-WPOM structures are highly correlated with their counterparts in solution as characterized by nuclear magnetic resonance (NMR) spectroscopy. The strong correlation between the gas- and solution phase structures of CD-WPOM complexes highlight the power of gas-phase IM-MS for the structural characterization of supramolecular complexes with nanosized guests, which may be difficult to examine using conventional approaches.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA