Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(9): e2319492121, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38377196

RESUMO

The Kirsten rat sarcoma viral oncogene homologue KRAS is among the most commonly mutated oncogenes in human cancers, thus representing an attractive target for precision oncology. The approval for clinical use of the first selective inhibitors of G12C mutant KRAS therefore holds great promise for cancer treatment. However, despite initial encouraging clinical results, the overall survival benefit that patients experience following treatment with these inhibitors has been disappointing to date, pointing toward the need to develop more powerful combination therapies. Here, we show that responsiveness to KRASG12C and pan-RAS inhibitors in KRAS-mutant lung and colon cancer cells is limited by feedback activation of the parallel MAP2K4-JNK-JUN pathway. Activation of this pathway leads to elevated expression of receptor tyrosine kinases that reactivate KRAS and its downstream effectors in the presence of drug. We find that the combination of sotorasib, a drug targeting KRASG12C, and the MAP2K4 inhibitor HRX-0233 prevents this feedback activation and is highly synergistic in a panel of KRASG12C-mutant lung and colon cancer cells. Moreover, combining HRX-0233 and sotorasib is well-tolerated and resulted in durable tumor shrinkage in mouse xenografts of human lung cancer cells, suggesting a therapeutic strategy for KRAS-driven cancers.


Assuntos
Antineoplásicos , Neoplasias do Colo , Neoplasias Pulmonares , Humanos , Animais , Camundongos , Proteínas Proto-Oncogênicas p21(ras)/genética , Medicina de Precisão , Antineoplásicos/farmacologia , Oncogenes , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Mutação , MAP Quinase Quinase 4
2.
J Med Chem ; 67(16): 14553-14573, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39116445

RESUMO

ACKR3, an atypical chemokine receptor, has been associated with prothrombotic events and the development of cardiovascular events. We designed, synthesized, and evaluated a series of novel small molecule ACKR3 agonists. Extensive structure-activity relationship studies resulted in several promising agonists with potencies ranging from the low micromolar to nanomolar range, for example, 23 (EC50 = 111 nM, Emax = 95%) and 27 (EC50 = 69 nM, Emax = 82%) in the ß-arrestin-recruitment assay. These compounds are selective for ACKR3 versus ACKR2, CXCR3, and CXCR4. Several agonists were subjected to investigations of their P-selectin expression reduction in the flow cytometry experiments. In particular, compounds 23 and 27 showed the highest potency for platelet aggregation inhibition, up to 80% and 97%, respectively. The most promising compounds, especially 27, exhibited good solubility, metabolic stability, and no cytotoxicity, suggesting a potential tool compound for the treatment of platelet-mediated thrombosis.


Assuntos
Desenho de Fármacos , Inibidores da Agregação Plaquetária , Agregação Plaquetária , Receptores CXCR , Humanos , Inibidores da Agregação Plaquetária/farmacologia , Inibidores da Agregação Plaquetária/síntese química , Inibidores da Agregação Plaquetária/química , Relação Estrutura-Atividade , Agregação Plaquetária/efeitos dos fármacos , Receptores CXCR/agonistas , Receptores CXCR/metabolismo , Animais , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/síntese química , Selectina-P/metabolismo , Plaquetas/efeitos dos fármacos , Plaquetas/metabolismo
3.
J Med Chem ; 67(1): 2-16, 2024 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-38134304

RESUMO

Enzyme inhibitors that form covalent bonds with their targets are being increasingly pursued in drug development. Assessing their biochemical activity relies on time-dependent assays, which are distinct and more complex compared with methods commonly employed for reversible-binding inhibitors. To provide general guidance to the covalent inhibitor development community, we explored methods and reported kinetic values and experimental factors in determining the biochemical activity of various covalent epidermal growth factor receptor (EGFR) inhibitors. We showcase how liquid handling and assay reagents impact kinetic parameters and potency interpretations, which are critical for structure-kinetic relationships and covalent drug design. Additionally, we include benchmark kinetic values with reference inhibitors, which are imperative, as covalent EGFR inhibitor kinetic values are infrequently consistent in the literature. This overview seeks to inform best practices for developing new covalent inhibitors and highlight appropriate steps to address gaps in knowledge presently limiting assay reliability and reproducibility.


Assuntos
Inibidores Enzimáticos , Receptores ErbB , Reprodutibilidade dos Testes , Inibidores Enzimáticos/farmacologia , Desenho de Fármacos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química
4.
J Med Chem ; 67(8): 6549-6569, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38604131

RESUMO

Fibroblast growth factor receptor 4 (FGFR4) is thought to be a driver in several cancer types, most notably in hepatocellular carcinoma. One way to achieve high potency and isoform selectivity for FGFR4 is covalently targeting a rare cysteine (C552) in the hinge region of its kinase domain that is not present in other FGFR family members (FGFR1-3). Typically, this cysteine is addressed via classical acrylamide electrophiles. We demonstrate that noncanonical covalent "warheads" based on nucleophilic aromatic substitution (SNAr) chemistry can be employed in a rational manner to generate highly potent and (isoform-)selective FGFR4 inhibitors with a low intrinsic reactivity. Key compounds showed low to subnanomolar potency, efficient covalent inactivation kinetics, and excellent selectivity against the other FGFRs, the kinases with an equivalent cysteine, and a representative subset of the kinome. Moreover, these compounds achieved nanomolar potencies in cellular assays and demonstrated good microsomal stability, highlighting the potential of SNAr-based approaches in covalent inhibitor design.


Assuntos
Inibidores de Proteínas Quinases , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/antagonistas & inibidores , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/metabolismo , Humanos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/síntese química , Relação Estrutura-Atividade , Microssomos Hepáticos/metabolismo
6.
ACS Pharmacol Transl Sci ; 7(2): 493-514, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38357286

RESUMO

Cathepsins (Cats) are proteases that mediate the successful entry of SARS-CoV-2 into host cells. We designed and synthesized a tailored series of 21 peptidomimetics and evaluated their inhibitory activity against human cathepsins L, B, and S. Structural diversity was realized by combinations of different C-terminal warhead functions and N-terminal capping groups, while a central Leu-Phe fragment was maintained. Several compounds were identified as promising cathepsin L and S inhibitors with Ki values in the low nanomolar to subnanomolar range, for example, the peptide aldehydes 9a and 9b (9a, 2.67 nM, CatL; 0.455 nM, CatS; 9b, 1.76 nM, CatL; 0.512 nM, CatS). The compounds' inhibitory activity against the main protease of SARS-CoV-2 (Mpro) was additionally investigated. Based on the results at CatL, CatS, and Mpro, selected inhibitors were subjected to investigations of their antiviral activity in cell-based assays. In particular, the peptide nitrile 11e exhibited promising antiviral activity with an EC50 value of 38.4 nM in Calu-3 cells without showing cytotoxicity. High metabolic stability and favorable pharmacokinetic properties make 11e suitable for further preclinical development.

7.
Nat Commun ; 15(1): 1287, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38346946

RESUMO

Fibroblast growth factor receptor (FGFR)-2 can be inhibited by FGFR-selective or non-selective tyrosine kinase inhibitors (TKIs). Selective TKIs are approved for cholangiocarcinoma (CCA) with FGFR2 fusions; however, their application is limited by a characteristic pattern of adverse events or evocation of kinase domain mutations. A comprehensive characterization of a patient cohort treated with the non-selective TKI lenvatinib reveals promising efficacy in FGFR2-driven CCA. In a bed-to-bench approach, we investigate FGFR2 fusion proteins bearing critical tumor-relevant point mutations. These mutations confer growth advantage of tumor cells and increased resistance to selective TKIs but remain intriguingly sensitive to lenvatinib. In line with clinical observations, in-silico analyses reveal a more favorable interaction pattern of lenvatinib with FGFR2, including an increased flexibility and ligand efficacy, compared to FGFR-selective TKIs. Finally, the treatment of a patient with progressive disease and a newly developed kinase mutation during therapy with a selective inhibitor results in a striking response to lenvatinib. Our in vitro, in silico, and clinical data suggest that lenvatinib is a promising treatment option for FGFR2-driven CCA, especially when insurmountable adverse reactions of selective TKIs or acquired kinase mutations occur.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Compostos de Fenilureia , Quinolinas , Humanos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Colangiocarcinoma/tratamento farmacológico , Colangiocarcinoma/genética , Colangiocarcinoma/metabolismo , Ductos Biliares Intra-Hepáticos , Neoplasias dos Ductos Biliares/tratamento farmacológico , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/patologia
8.
Commun Chem ; 7(1): 38, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378740

RESUMO

Bivalent molecules consisting of groups connected through bridging linkers often exhibit strong target binding and unique biological effects. However, developing bivalent inhibitors with the desired activity is challenging due to the dual motif architecture of these molecules and the variability that can be introduced through differing linker structures and geometries. We report a set of alternatively linked bivalent EGFR inhibitors that simultaneously occupy the ATP substrate and allosteric pockets. Crystal structures show that initial and redesigned linkers bridging a trisubstituted imidazole ATP-site inhibitor and dibenzodiazepinone allosteric-site inhibitor proved successful in spanning these sites. The re-engineered linker yielded a compound that exhibited significantly higher potency (~60 pM) against the drug-resistant EGFR L858R/T790M and L858R/T790M/C797S, which was superadditive as compared with the parent molecules. The enhanced potency is attributed to factors stemming from the linker connection to the allosteric-site group and informs strategies to engineer linkers in bivalent agent design.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA