Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Synchrotron Radiat ; 26(Pt 4): 1316-1321, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31274460

RESUMO

The factors limiting the performance of alternative polycrystalline solar cells as compared with their single-crystal counterparts are not fully understood, but are thought to originate from structural and chemical heterogeneities at various length scales. Here, it is demonstrated that multimodal focused nanobeam X-ray microscopy can be used to reveal multiple aspects of the problem in a single measurement by mapping chemical makeup, lattice structure and charge collection efficiency simultaneously in a working solar cell. This approach was applied to micrometre-sized individual grains in a Cu(In,Ga)Se2 polycrystalline film packaged in a working device. It was found that, near grain boundaries, collection efficiency is increased, and that in these regions the lattice parameter of the material is expanded. These observations are discussed in terms of possible physical models and future experiments.

2.
Nano Lett ; 18(10): 6292-6300, 2018 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-30185051

RESUMO

Semiconductor nanowire (NW) lasers are attractive as integrated on-chip coherent light sources with strong potential for applications in optical communication and sensing. Realizing lasers from individual bulk-type NWs with emission tunable from the near-infrared to the telecommunications spectral region is, however, challenging and requires low-dimensional active gain regions with an adjustable band gap and quantum confinement. Here, we demonstrate lasing from GaAs-(InGaAs/AlGaAs) core-shell NWs with multiple InGaAs quantum wells (QW) and lasing wavelengths tunable from ∼0.8 to ∼1.1 µm. Our investigation emphasizes particularly the critical interplay between QW design, growth kinetics, and the control of InGaAs composition in the active region needed for effective tuning of the lasing wavelength. A low shell growth temperature and GaAs interlayers at the QW/barrier interfaces enable In molar fractions up to ∼25% without plastic strain relaxation or alloy intermixing in the QWs. Correlated scanning transmission electron microscopy, atom probe tomography, and confocal PL spectroscopy analyses illustrate the high sensitivity of the optically pumped lasing characteristics on microscopic properties, providing useful guidelines for other III-V-based NW laser systems.

3.
Nano Lett ; 15(5): 3295-302, 2015 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-25923841

RESUMO

Strong surface and impurity scattering in III-V semiconductor-based nanowires (NW) degrade the performance of electronic devices, requiring refined concepts for controlling charge carrier conductivity. Here, we demonstrate remote Si delta (δ)-doping of radial GaAs-AlGaAs core-shell NWs that unambiguously exhibit a strongly confined electron gas with enhanced low-temperature field-effect mobilities up to 5 × 10(3) cm(2) V(-1) s(-1). The spatial separation between the high-mobility free electron gas at the NW core-shell interface and the Si dopants in the shell is directly verified by atom probe tomographic (APT) analysis, band-profile calculations, and transport characterization in advanced field-effect transistor (FET) geometries, demonstrating powerful control over the free electron gas density and conductivity. Multigated NW-FETs allow us to spatially resolve channel width- and crystal phase-dependent variations in electron gas density and mobility along single NW-FETs. Notably, dc output and transfer characteristics of these n-type depletion mode NW-FETs reveal excellent drain current saturation and record low subthreshold slopes of 70 mV/dec at on/off ratios >10(4)-10(5) at room temperature.


Assuntos
Alumínio/química , Arsenicais/química , Gálio/química , Nanotecnologia , Nanofios/química , Elétrons , Semicondutores , Silício/química
4.
Nano Lett ; 11(6): 2499-502, 2011 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-21591656

RESUMO

The potential of the metal nanocatalyst to contaminate vapor-liquid-solid (VLS) grown semiconductor nanowires has been a long-standing concern, since the most common catalyst material, Au, is known to induce deep gap states in several semiconductors. Here we use Kelvin probe force microscopy to image individual deep acceptor type trapping centers in single undoped Si nanowires grown with an Au catalyst. The switching between occupied and empty trap states is reversibly controlled by the back-gate potential in a nanowire transistor. The trap energy level, i.e., E(C) - E(T) = 0.65 ± 0.1 eV was extracted and the concentration was estimated to be ∼2 × 10(16) cm(-3). The energy and concentration are consistent with traps resulting from the unintentional incorporation of Au atoms during the VLS growth.


Assuntos
Nanofios/química , Silício/química , Catálise , Ouro/química , Semicondutores , Propriedades de Superfície , Transistores Eletrônicos
5.
Nano Lett ; 11(1): 183-7, 2011 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-21126102

RESUMO

Semiconducting nanowires grown by the vapor-liquid-solid method commonly develop nonuniform doping profiles both along the growth axis and radially due to unintentional surface doping and diffusion of the dopants from the nanowire surface to core during synthesis. We demonstrate two approaches to mitigate nonuniform doping in phosphorus-doped Si nanowires grown by the vapor-liquid-solid process. First, the growth conditions can be modified to suppress active surface doping. Second, thermal annealing following growth can be used to produce more uniform doping profiles. Kelvin probe force microscopy and scanning photocurrent microscopy were used to measure the radial and the longitudinal active dopant distribution, respectively. Doping concentration variations were reduced by 2 orders of magnitude in both annealed nanowires and those for which surface doping was suppressed.

6.
Science ; 294(5545): 1313-7, 2001 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-11701922

RESUMO

Miniaturization in electronics through improvements in established "top-down" fabrication techniques is approaching the point where fundamental issues are expected to limit the dramatic increases in computing seen over the past several decades. Here we report a "bottom-up" approach in which functional device elements and element arrays have been assembled from solution through the use of electronically well-defined semiconductor nanowire building blocks. We show that crossed nanowire p-n junctions and junction arrays can be assembled in over 95% yield with controllable electrical characteristics, and in addition, that these junctions can be used to create integrated nanoscale field-effect transistor arrays with nanowires as both the conducting channel and gate electrode. Nanowire junction arrays have been configured as key OR, AND, and NOR logic-gate structures with substantial gain and have been used to implement basic computation.

7.
Nat Commun ; 6: 7541, 2015 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-26089110

RESUMO

Spin-based devices offer non-volatile, scalable, low power and reprogrammable functionality for emerging device technologies. Here we fabricate nanoscale spintronic devices with ferromagnetic metal/single-layer graphene tunnel barriers used to generate spin accumulation and spin currents in a silicon nanowire transport channel. We report the first observation of spin precession via the Hanle effect in both local three-terminal and non-local spin-valve geometries, providing a direct measure of spin lifetimes and confirmation of spin accumulation and pure spin transport. The use of graphene as the tunnel barrier provides a low-resistance area product contact and clean magnetic switching characteristics, because it smoothly bridges the nanowire and minimizes complicated magnetic domains that otherwise compromise the magnetic behaviour. Utilizing intrinsic two-dimensional layers such as graphene or hexagonal boron nitride as tunnel contacts on nanowires offers many advantages over conventional materials deposited by vapour deposition, enabling a path to highly scaled electronic and spintronic devices.

8.
Faraday Discuss ; (117): 249-55; discussion 257-75, 2000.
Artigo em Inglês | MEDLINE | ID: mdl-11271996

RESUMO

A scanning tunneling microscope (STM) operating at 9 K in ultrahigh vacuum was used to initiate a bimolecular reaction between isolated hydrogen sulfide and dicarbon molecules on the Cu(001) surface. The reaction products ethynyl (CCH) and sulfhydryl (SH) were identified by inelastic electron tunneling spectroscopy (STM-IETS) and by sequentially removing hydrogen atoms from an H2S molecule using energetic tunneling electrons. For comparison, the thermal diffusion and reaction of H2S and CC at 45 K and H2O and CC at 9 K were also observed.

9.
Philos Trans A Math Phys Eng Sci ; 362(1819): 1247-60, 2004 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-15306476

RESUMO

Recent progress on the synthesis and characterization of semiconductor nanowire heterostructures is reviewed. We describe a general method for heterostructure synthesis based on chemical vapour deposition and the vapour-liquid-solid growth of crystalline semiconducting nanowires. We then examine examples of nanowire heterostructures for which physical properties have been measured, considering the effects of synthetic conditions on the heterointerfaces as well as the electrical and optical characterization measurements that reveal heterointerface formation and quality. Finally, we identify areas of technical and conceptual progress that can contribute to the development of functional nanowire heterostructures.

10.
Phys Rev Lett ; 86(12): 2593-6, 2001 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-11289988

RESUMO

A combined experimental and theoretical study is presented for the C-D stretch mode excitation of acetylene isotopes, C2HD and C2D2, on Cu(100) via inelastic electron tunneling (IET) in a scanning tunneling microscope junction. The calculated IET images using density functional theory show that the measured signal from C2D2 derives from the antisymmetric stretch mode. Selection rules are derived and involve the constraint imposed by the IET image on the symmetry characters of the vibrational mode and the adsorbate-induced electron states at the Fermi level.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA