Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Chem Rev ; 118(2): 372-433, 2018 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-28985048

RESUMO

Hydrogen gas is a storable form of chemical energy that could complement intermittent renewable energy conversion. One of the main disadvantages of hydrogen gas arises from its low density, and therefore, efficient handling and storage methods are key factors that need to be addressed to realize a hydrogen-based economy. Storage systems based on liquids, in particular, formic acid and alcohols, are highly attractive hydrogen carriers as they can be made from CO2 or other renewable materials, they can be used in stationary power storage units such as hydrogen filling stations, and they can be used directly as transportation fuels. However, to bring about a paradigm change in our energy infrastructure, efficient catalytic processes that release the hydrogen from these molecules, as well as catalysts that regenerate these molecules from CO2 and hydrogen, are required. In this review, we describe the considerable progress that has been made in homogeneous catalysis for these critical reactions, namely, the hydrogenation of CO2 to formic acid and methanol and the reverse dehydrogenation reactions. The dehydrogenation of higher alcohols available from renewable feedstocks is also described. Key structural features of the catalysts are analyzed, as is the role of additives, which are required in many systems. Particular attention is paid to advances in sustainable catalytic processes, especially to additive-free processes and catalysts based on Earth-abundant metal ions. Mechanistic information is also presented, and it is hoped that this review not only provides an account of the state of the art in the field but also offers insights into how superior catalytic systems can be obtained in the future.

2.
Angew Chem Int Ed Engl ; 56(35): 10559-10563, 2017 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-28678430

RESUMO

Ionic liquids (ILs) are versatile solvents and catalysts for the synthesis of quinazoline-2,4-dione from 2-aminobenzonitrile and CO2 . However, the role of the IL in this reaction is poorly understood. Consequently, we investigated this reaction and showed that the IL cation does not play a significant role in the activation of the substrates, and instead plays a secondary role in controlling the physical properties of the IL. A linear relationship between the pKa of the IL anion (conjugate acid) and the reaction rate was identified with maximum catalyst efficiency observed at a pKa of >14.7 in DMSO. The base-catalyzed reaction is limited by the acidity of the quinazoline-2,4-dione product, which is deprotonated by more basic catalysts, leading to the formation of the quinazolide anion (conjugate acid pKa 14.7). Neutralization of the original catalyst and formation of the quinazolide anion catalyst leads to the observed reaction limit.

3.
Chemistry ; 22(44): 15605-15608, 2016 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-27582027

RESUMO

Carbon dioxide may constitute a source of chemicals and fuels if efficient and renewable processes are developed that directly utilize it as feedstock. Two of its reduction products are formic acid and methanol, which have also been proposed as liquid organic chemical carriers in sustainable hydrogen storage. Here we report that both the hydrogenation of carbon dioxide to formic acid and the disproportionation of formic acid into methanol can be realized at ambient temperature and in aqueous, acidic solution, with an iridium catalyst. The formic acid yield is maximized in water without additives, while acidification results in complete (98 %) and selective (96 %) formic acid disproportionation into methanol. These promising features in combination with the low reaction temperatures and the absence of organic solvents and additives are relevant for a sustainable hydrogen/methanol economy.

4.
Phys Chem Chem Phys ; 18(16): 10764-73, 2016 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-26890151

RESUMO

Solvents playing a crucial role in many chemical reactions and additives can be used to shift the reaction equilibrium. Herein we study the enthalpy of mixing for selected solvents (aqueous, organic) and basic additives (amines, aqueous KOH) when mixed with formic acid with the aim to optimize hydrogen storage/delivery in the CO2/HCOOH system. Formic acid, resulting from carbon dioxide hydrogenation, reaches highest yields when effectively "removed" from the reaction equilibrium. In terms of energy efficiency, any heat released during CO2 hydrogenation has to be reused in the reverse reaction, during the production of hydrogen. In any scenario, the usage of basic chemicals, non-innocent solvents, causes higher energy release in CO2 hydrogenation, which has to be reused in the hydrogen delivery process. Therefore, the enthalpy of mixing is a valuable parameter for designing hydrogen storage devices since it allows the estimation of energy balance for the CO2 hydrogenation/H2 liberation cycle. The highest formic acid concentrations in direct catalytic CO2 hydrogenation under acidic conditions were reached in DMSO. DMSO exhibits considerably stronger interactions with formic acid compared to water as was observed in calorimetric measurements. This difference can be ascribed, at least partly, to stronger hydrogen bonding of FA to DMSO than to water in the corresponding solutions, examined by a combination of IR spectroscopic and quantum chemical studies. Furthermore, the investigation of DMSO/FA- and water/FA systems by (1)H- and (13)C-NMR spectroscopy revealed that only 1 : 1 aggregates are formed in the DMSO solutions of FA in a broad concentration range, while the stoichiometry and the number of the FA-water aggregates essentially depend on the concentration of aqueous solutions.

5.
J Am Chem Soc ; 137(18): 6053-8, 2015 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-25865079

RESUMO

Hydroamidation of olefins constitutes an ideal, atom-efficient method to prepare carboxylic amides from easily available olefins, CO, and amines. So far, aliphatic amines are not suitable for these transformations. Here, we present a ligand- and additive-free Rh(I) catalyst as solution to this problem. Various amides are obtained in good yields and excellent regioselectivities. Notably, chemoselective amidation of aliphatic amines takes place in the presence of aromatic amines and alcohols. Mechanistic studies reveal the presence of Rh-acyl species as crucial intermediates for the selectivity and rate-limiting step in the proposed Rh(I)-catalytic cycle.

6.
Chimia (Aarau) ; 69(12): 746-752, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26842324

RESUMO

This year Mankind will release about 39 Gt carbon dioxide into the earth's atmosphere, where it acts as a greenhouse gas. The chemical transformation of carbon dioxide into useful products becomes increasingly important, as the CO(2) concentration in the atmosphere has reached 400 ppm. One approach to contribute to the decrease of this hazardous emission is to recycle CO(2), for example reducing it to formic acid. The hydrogenation of CO(2) can be achieved with a series of catalysts under basic and acidic conditions, in wide variety of solvents. To realize a hydrogen-based charge-discharge device ('hydrogen battery'), one also needs efficient catalysts for the reverse reaction, the dehydrogenation of formic acid. Despite of the fact that the overwhelming majority of these reactions are carried out using precious metals-based catalysts (mainly Ru), we review here developments for catalytic hydrogen evolution from formic acid with iron-based complexes.

7.
Chemistry ; 20(15): 4273-83, 2014 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-24590571

RESUMO

A series of thioether-functionalised imidazolium salts have been prepared and characterized. Subsequent reaction of the thioether-functionalised imidazolium salts with iodomethane affords imidazolium-sulfonium salts composed of doubly charged cations and two different anions. Imidazolium-sulfonium salts containing a single anion type are obtained either by a solvent extraction method or by anion exchange. The imidazolium-sulfonium salts undergo a methyl-transfer reaction on exposure to water, giving rise to a new, singly charged imidazolium salt with iodide introduced at the 2-position of the imidazolium ring. Crystal structures of some of the imidazolium-sulfonium salts were determined by X-ray crystallography providing the topology of the interactions between the dications and the anions. Electrospray ionization mass spectrometry and quantum-chemical calculations were used to rationalise the relative strength of these interactions.

8.
Chemistry ; 20(42): 13589-602, 2014 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-25196789

RESUMO

The iron-catalyzed dehydrogenation of formic acid has been studied both experimentally and mechanistically. The most active catalysts were generated in situ from cationic Fe(II) /Fe(III) precursors and tris[2-(diphenylphosphino)ethyl]phosphine (1, PP3 ). In contrast to most known noble-metal catalysts used for this transformation, no additional base was necessary. The activity of the iron catalyst depended highly on the solvent used, the presence of halide ions, the water content, and the ligand-to-metal ratio. The optimal catalytic performance was achieved by using [FeH(PP3 )]BF4 /PP3 in propylene carbonate in the presence of traces of water. With the exception of fluoride, the presence of halide ions in solution inhibited the catalytic activity. IR, Raman, UV/Vis, and EXAFS/XANES analyses gave detailed insights into the mechanism of hydrogen generation from formic acid at low temperature, supported by DFT calculations. In situ transmission FTIR measurements revealed the formation of an active iron formate species by the band observed at 1543 cm(-1) , which could be correlated with the evolution of gas. This active species was deactivated in the presence of chloride ions due to the formation of a chloro species (UV/Vis, Raman, IR, and XAS). In addition, XAS measurements demonstrated the importance of the solvent for the coordination of the PP3 ligand.

9.
Angew Chem Int Ed Engl ; 53(47): 12876-9, 2014 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-25256038

RESUMO

N-methylation of amines is an important step in the synthesis of many pharmaceuticals and has been widely applied in the preparation of other key intermediates and chemicals. Therefore, the development of efficient methylation methods has attracted considerable attention. In this respect, carbon dioxide is an attractive C1 building block because it is an abundant, renewable, and nontoxic carbon source. Consequently, we developed a highly chemoselective, metal-free catalytic system that operates under ambient conditions for the N-methylation of amines.

10.
Chemistry ; 19(4): 1227-34, 2013 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-23293076

RESUMO

Heteronuclear Au-Pd nanoparticles were prepared and immobilized in the functionalized ionic liquid [C(2)OHmim][NTf(2)]. The structural and electronic properties of the nanoparticles were characterized by a range of techniques and the surface of the nanoparticles was found to be enriched in Pd. Moreover, the extent of Pd enrichment is easily controlled by varying the ratio of Au and Pd salts used in the synthesis. The heteronuclear nanoparticles were found to be effective catalysts in dehalogenation reactions with no activity observed for the pure Au nanoparticles and only limited activity for the pure Pd nanoparticles. The activity of the heteronuclear nanoparticles may be attributed to charge transfer from Pd to Au and consequently to more efficient reductive elimination.

11.
Inorg Chem ; 50(17): 8038-45, 2011 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-21793580

RESUMO

A new water-soluble methyl-imidazolium-based ionic polymer was synthesized by ring-opening metathesis polymerization that was subsequently used to prepare aqueous gold nanoparticle solutions which were characterized by UV-vis spectroscopy and transmission electron microscopy (TEM). The aqueous gold nanoparticle solutions were employed as catalysts in the reduction of p-nitrophenol and in the hydrogenation of cinnamaldehyde and were found to exhibit excellent activity under mild conditions.


Assuntos
Ouro/química , Imidazóis/síntese química , Nanopartículas Metálicas/química , Polímeros/síntese química , Catálise , Técnicas de Química Sintética , Imidazóis/química , Íons/síntese química , Íons/química , Estrutura Molecular , Tamanho da Partícula , Polímeros/química , Solubilidade , Propriedades de Superfície , Água/química
12.
Chimia (Aarau) ; 65(9): 663-6, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22026175

RESUMO

Carbon dioxide and the carbonates, the available natural C1 sources, can be easily hydrogenated into formic acid and formates in water; the rate of this reduction strongly depends on the pH of the solution. This reaction is catalysed by ruthenium(II) pre-catalyst complexes with a large variety of water-soluble phosphine ligands; high conversions and turnover numbers have been realised. Although ruthenium(II) is predominant in these reactions, the iron(II) - tris[(2-diphenylphosphino)-ethyl]phosphine (PP3) complex is also active, showing a new perspective to use abundant and inexpensive iron-based compounds in the CO2 reduction. In the catalytic hydrogenation cycles the in situ formed metal hydride complexes play a key role, their structures with several other intermediates have been proven by multinuclear NMR spectroscopy. In the other hand safe and convenient hydrogen storage and supply is the fundamental question for the further development of the hydrogen economy; and carbon dioxide has been recognised to be a viable H2 vector. Formic acid--containing 4.4 weight % of H2, that is 53 g hydrogen per litre--is suitable for H2 storage; we have shown that in aqueous solutions it can be selectively decomposed into CO-free (CO < 10 ppm) CO2 and H2. The reaction takes place under mild experimental conditions and it is able to generate high pressure H2 (up to 600 bar). The cleavage of HCOOH is catalysed by several hydrophilic Ru(II) phosphine complexes (meta-trisulfonated triphenylphosphine, mTPPTS, being the most efficient one), either in homogeneous systems or as immobilised catalysts. We have also shown that the iron(II)--hydrido tris[(2-diphenylphosphino)ethyl]phosphine complex catalyses with an exceptionally high rate and efficiency (turnover frequency, TOF = 9425 h(-1)mol(-1); turnover number, TON = 92400) the formic acid cleavage, in environmentally friendly propylene carbonate solution, opening the way to use cheap, non-noble metal based catalysts for this reaction, too.


Assuntos
Dióxido de Carbono/química , Fontes Geradoras de Energia , Formiatos/química , Hidrogênio/química , Água/química , Catálise , Oxirredução , Termodinâmica
13.
Chimia (Aarau) ; 65(4): 214-8, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21678764

RESUMO

Formic acid, containing 4.4 wt% of hydrogen, is a non-toxic liquid at ambient temperature and therefore an ideal candidate as potential hydrogen storage material. Formic acid can be generated via catalytic hydrogenation of CO2 or bicarbonate in the presence of an amine with suitable ruthenium catalysts. In addition selective dehydrogenation of formic acid amine adducts can be carried out at ambient temperatures with either ruthenium phosphine catalyst systems as well as iron-based catalysts. In detail we obtained with the [RuCl2(benzene)]2/dppe catalyst system a remarkable TON of 260,000 at room temperature. Moreover applying Fe3(CO)12 together with tribenzylphosphine and 2,2':6',2"-terpyridine under visible light irradiation a TON of 1266 was obtained, which is the highest activity known to date for selective dehydrogenation of formic acid applying non-precious metal catalysts.


Assuntos
Hidrogênio/química , Compostos Organometálicos/química , Aminas/química , Catálise , Formiatos/química , Ferro/química , Fosfinas/química , Piridinas/química , Rutênio/química , Temperatura
14.
JACS Au ; 1(6): 729-733, 2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34467329

RESUMO

Rhodium nanoparticles embedded on the interior of hollow porous carbon nanospheres, able to sieve monomers from polymers, were used to confirm the precise role of metal catalysts in the reductive catalytic fractionation of lignin. The study provides clear evidence that the primary function of the metal catalyst is to hydrogenate monomeric lignin fragments into more stable forms following a solvent-based fractionation and fragmentation of lignin.

15.
Chemistry ; 16(44): 13139-54, 2010 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-20886467

RESUMO

A large series of ionic liquids (ILs) based on the weakly coordinating alkoxyaluminate [Al(hfip)(4)](-) (hfip: hexafluoroisopropoxy) with classical as well as functionalized cations were prepared, and their principal physical properties determined. Melting points are between 0 ([C(4)MMIM][Al(hfip)(4)]) and 69 °C ([C(3)MPip][Al(hfip)(4)]); three qualify as room-temperature ILs (RTILs). Crystal structures for six ILs were determined; their structural parameters and anion-cation contacts are compared here with known ILs, with a special focus on their influence on physical properties. Moreover, the biodegradability of the compounds was investigated by using the closed-bottle and the manometric respirometry test. Temperature-dependent viscosities and conductivities were measured between 0 and 80 °C, and described by either the Vogel-Fulcher-Tammann (VFT) or the Arrhenius equations. Moreover, conductivities and viscosities were investigated in the context of the molecular volume, V(m). Physical property-V(m) correlations were carried out for various temperatures, and the temperature dependence of the molecular volume was analyzed by using crystal structure data and DFT calculations. The IL ionicity was investigated by Walden plots; according to this analysis, [Al(hfip)(4)](-) ILs may be classified as "very good to good ILs"; while [C(2)MIM][Al(hfip)(4)] is a better IL than [C(2)MIM][NTf(2)]. The dielectric constants of ten [Al(hfip)(4)](-) ILs were determined, and are unexpectedly high (ε(r)=11.5 to 16.8). This could be rationalized by considering additional calculated dipole moments of the structures frozen in the solid state by DFT. The determination of hydrogen gas solubility in [Al(hfip)(4)](-) RTILs by high-pressure NMR spectroscopy revealed very high hydrogen solubilities at 25 °C and 1 atm. These results indicate the significant potential of this class of ILs in manifold applications.

17.
Chemistry ; 15(15): 3752-60, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19229942

RESUMO

A homogenous catalytic system has been developed that efficiently and selectively decomposes formic acid into hydrogen and carbon dioxide. [Ru(H(2)O)(6)](2+), [Ru(H(2)O)(6)](3+) and RuCl(3) x xH(2)O are all excellent pre-catalysts in presence of TPPTS (TPPTS = meta-trisulfonated triphenylphosphine), the formic acid decomposition taking place in the aqueous phase, under mild conditions and over a large range of pressures. Optimisation of the reaction conditions is described together with a detailed mechanistic study leading to a tentative catalytic cycle. The performance of the catalytic system for continuous hydrogen generation is presented. Overall, the method proposed overcomes the limitations of other catalysts for the decomposition of formic acid making it a viable hydrogen-storage material.

18.
Inorg Chem ; 47(17): 7444-6, 2008 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-18616239

RESUMO

Polyvinyl pyrrolidone stabilized rhodium nanoparticles are highly soluble in hydroxyl-functionalized ionic liquids, providing an effective and highly stable catalytic system. In hydrogenation reactions, excellent results were obtained, and transmission electron microscopy, solubility determinations, and leaching experiments were employed to quantify the advantages of this catalytic system.

19.
ChemSusChem ; 11(13): 2077-2082, 2018 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-29722204

RESUMO

Hydrogen is of fundamental importance for the construction of modern clean-energy supply systems. In this context, the catalytic dehydrogenation of formic acid (FA) is a convenient method to generate H2 gas from an easily available liquid. One of the issues associated with current catalytic dehydrogenation systems is insufficient stability. Here, we present a robust and recyclable system for FA dehydrogenation by combining a ruthenium 1,1,1-tris(diphenylphosphinomethyl)ethane complex and aluminum trifluoromethanesulfonate (Al(OTf)3 ). This robust system allows steady H2 production under pressure and recycling for an additional 14 runs without any apparent loss of activity (turnover frequencies up to 1920 h-1 , turnover numbers up to 20 000). Notably, the catalyst can also be used for the dehydrogenation of formates and the reverse hydrogenation of bicarbonates and CO2 .

20.
J Phys Chem B ; 111(45): 13014-9, 2007 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-17949033

RESUMO

The solubility of H(2)S in a series of 1-butyl-3-methylimidazolium ([bmim](+)) based ionic liquids (ILs) with different anions, chloride, tetrafluoroborate ([BF(4)](-)), hexafluorophosphate ([PF(6)](-)), triflate ([TfO](-)), and bis(trifluoromethyl)sulfonylimide ([Tf(2)N]-), and in a series of [Tf(2)N] ILs with different cations, i.e., N-alkyl-N'-methylimidazolium, 2-methyl-N-methyl-N'-alkyimidazolium, N-alkylpyridinium, N-butyl-N-methylpyrrolidinium, and N-alkyl-N,N-dimethyl-N-(2-hydroxyethyl)ammonium has been determined using medium-pressure NMR spectroscopy. The observed solubilities are significantly higher than those reported for many other gases in ILs, suggesting the occurrence of specific interactions between H2S and the examined ILs. Quantum chemical calculations have been used to investigate at a molecular level the interaction between H2S and the [bmim](+)-based ILs.


Assuntos
Sulfeto de Hidrogênio/química , Imidazóis/química , Ânions/química , Boratos/química , Espectroscopia de Ressonância Magnética/métodos , Modelos Moleculares , Teoria Quântica , Solubilidade , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA