Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Int J Mol Sci ; 24(21)2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37958598

RESUMO

The morphology of the oral cavity of fish is related to their feeding habits. In this context, taste buds are studied for their ability to catch chemical stimuli and their cell renewal capacity. Vimentin RV202 is a protein employed as a marker for mesenchymal cells that can differentiate along different lineages and to self-renew, while Calretinin N-18 is employed as a marker of sensory cells, and ubiquitin is a protein crucial for guiding the fate of stem cells throughout development. In this study, a surface morphology investigation and an immunohistochemical analysis have been conducted. The results of the present study reveal, for the first time, the presence of Vimentin RV202 in a taste bud cell population of zebrafish. Some taste bud cells are just Vimentin RV202-immunoreactive, while in other cells Vimentin RV202 and Calretinin N-18 colocalize. Some taste buds are just reactive to Calretinin N-18. Vimentin RV202-immunoreactive cells have been observed in the connective layer and in the basal portion of the taste buds. The immunoreactivity of ubiquitin was restricted to sensory cells. Further studies are needed to elucidate the role of Vimentin RV202 in the maturation of taste bud cells, its potential involvement in the regeneration of these chemosensory organs, and its eventual synergic work with ubiquitin.


Assuntos
Papilas Gustativas , Vimentina , Animais , Calbindina 2/metabolismo , Papilas Gustativas/metabolismo , Ubiquitinas/metabolismo , Vimentina/metabolismo , Peixe-Zebra/metabolismo
2.
Int J Mol Sci ; 24(3)2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36768639

RESUMO

Heterotis niloticus is a basal teleost, belonging to the Osteoglossidae family, which is widespread in many parts of Africa. The digestive tract of H. niloticus presents similar characteristics to those of higher vertebrates, exhibiting a gizzard-like stomach and lymphoid aggregates in the intestinal lamina propria. The adaptive immune system of teleost fish is linked with each of their mucosal body surfaces. In fish, the gut-associated lymphoid tissue (GALT) is generally a diffuse immune system that represents an important line of defense against those pathogens inhabiting the external environment that can enter through food. The GALT comprises intraepithelial lymphocytes, which reside in the epithelial layer, and lamina propria leukocytes, which consist of lymphocytes, macrophages, granulocytes, and dendritic-like cells. This study aims to characterize, for the first time, the leukocytes present in the GALT of H. niloticus, by confocal immuno- fluorescence techniques, using specific antibodies: toll-like receptor 2, major histocompatibility complex class II, S100 protein, serotonin, CD4, langerin, and inducible nitric oxide synthetase. Our results show massive aggregates of immune cells in the thickness of the submucosa, arranged in circumscribed oval-shaped structures that are morphologically similar to the isolated lymphoid follicles present in birds and mammals, thus expanding our knowledge about the intestinal immunity shown by this fish.


Assuntos
Mucosa Intestinal , Intestinos , Animais , Imuno-Histoquímica , Peixes , Tecido Linfoide , Mamíferos
3.
Int J Mol Sci ; 24(2)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36674603

RESUMO

The incidence rates of light-induced retinopathies have increased significantly in the last decades because of continuous exposure to light from different electronic devices. Recent studies showed that exposure to blue light had been related to the pathogenesis of light-induced retinopathies. However, the pathophysiological mechanisms underlying changes induced by light exposure are not fully known yet. In the present study, the effects of exposure to light at different wavelengths with emission peaks in the blue light range (400-500 nm) on the localization of Calretinin-N18 (CaR-N18) and Calbindin-D28K (CaB-D28K) in adult zebrafish retina are studied using double immunofluorescence with confocal laser microscopy. CaB-D28K and CaR-N18 are two homologous cytosolic calcium-binding proteins (CaBPs) implicated in essential process regulation in central and peripheral nervous systems. CaB-D28K and CaR-N18 distributions are investigated to elucidate their potential role in maintaining retinal homeostasis under distinct light conditions and darkness. The results showed that light influences CaB-D28K and CaR-N18 distribution in the retina of adult zebrafish, suggesting that these CaBPs could be involved in the pathophysiology of retinal damage induced by the short-wavelength visible light spectrum.


Assuntos
Proteína G de Ligação ao Cálcio S100 , Peixe-Zebra , Animais , Calbindina 1 , Calbindina 2 , Peixe-Zebra/metabolismo , Calbindinas , Proteína G de Ligação ao Cálcio S100/metabolismo , Retina/metabolismo
4.
Mar Drugs ; 20(2)2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35200674

RESUMO

Antimicrobial peptides (AMPs) are found widespread in nature and possess antimicrobial and immunomodulatory activities. Due to their multifunctional properties, these peptides are a focus of growing body of interest and have been characterized in several fish species. Due to their similarities in amino-acid composition and amphipathic design, it has been suggested that neuropeptides may be directly involved in the innate immune response against pathogen intruders. In this review, we report the molecular characterization of the fish-specific AMP piscidin1, the production of an antibody raised against this peptide and the immunohistochemical identification of this peptide and enkephalins in the neuroepithelial cells (NECs) in the gill of several teleost fish species living in different habitats. In spite of the abundant literature on Piscidin1, the biological role of this peptide in fish visceral organs remains poorly explored, as well as the role of the neuropeptides in neuroimmune interaction in fish. The NECs, by their role as sensors of hypoxia changes in the external environments, in combination with their endocrine nature and secretion of immunomodulatory substances would influence various types of immune cells that contain piscidin, such as mast cells and eosinophils, both showing interaction with the nervous system. The discovery of piscidins in the gill and skin, their diversity and their role in the regulation of immune response will lead to better selection of these immunomodulatory molecules as drug targets to retain antimicrobial barrier function and for aquaculture therapy in the future.


Assuntos
Peptídeos Catiônicos Antimicrobianos/metabolismo , Proteínas de Peixes/metabolismo , Neuropeptídeos/metabolismo , Animais , Peptídeos Catiônicos Antimicrobianos/imunologia , Aquicultura , Proteínas de Peixes/imunologia , Peixes , Brânquias/metabolismo , Humanos , Imunidade Inata/imunologia , Neuropeptídeos/imunologia , Pele/metabolismo
5.
Int J Mol Sci ; 23(22)2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36430187

RESUMO

The amphibious teleost Giant mudskipper (Periophthalmodon schlosseri, Pallas 1770) inhabit muddy plains and Asian mangrove forests. It spends more than 90% of its life outside of the water, using its skin, gills, and buccal-pharyngeal cavity mucosa to breathe in oxygen from the surrounding air. All vertebrates have been found to have mast cells (MCs), which are part of the innate immune system. These cells are mostly found in the mucous membranes of the organs that come in contact with the outside environment. According to their morphology, MCs have distinctive cytoplasmic granules that are released during the degranulation process. Additionally, these cells have antimicrobial peptides (AMPs) that fight a variety of infections. Piscidins, hepcidins, defensins, cathelicidins, and histonic peptides are examples of fish AMPs. Confocal microscopy was used in this study to assess Piscidin1 expression in Giant Mudskipper branchial MCs. Our results demonstrated the presence of MCs in the gills is highly positive for Piscidin1. Additionally, colocalized MCs labeled with TLR2/5-HT and Piscidin1/5-HT supported our data. The expression of Piscidin1 in giant mudskipper MCs highlights the involvement of this peptide in the orchestration of teleost immunity, advancing the knowledge of the defense system of this fish.


Assuntos
Brânquias , Perciformes , Animais , Brânquias/metabolismo , Mastócitos , Serotonina/metabolismo , Perciformes/metabolismo , Peixes/metabolismo , Peptídeos/metabolismo
6.
Molecules ; 27(6)2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35335319

RESUMO

Psoriasis is one of the most widespread chronic inflammatory skin diseases, affecting about 2%-3% of the worldwide adult population. The pathogenesis of this disease is quite complex, but an interaction between genetic and environmental factors has been recognized with an essential modulation of inflammatory and immune responses in affected patients. Psoriatic plaques generally represent the clinical psoriatic feature resulting from an abnormal proliferation and differentiation of keratinocytes, which cause dermal hyperplasia, skin infiltration of immune cells, and increased capillarity. Some scientific pieces of evidence have reported that psychological stress may play a key role in psoriasis, and the disease itself may cause stress conditions in patients, thus reproducing a vicious cycle. The present review aims at examining immune cell involvement in psoriasis and the relationship of depression and stress in its pathogenesis and development. In addition, this review contains a focus on the possible use of natural products, thus pointing out their mechanism of action in order to counteract clinical and psychological symptoms.


Assuntos
Produtos Biológicos , Psoríase , Adulto , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Depressão/tratamento farmacológico , Depressão/etiologia , Humanos , Queratinócitos/patologia , Psoríase/genética , Pele/patologia
7.
Fish Shellfish Immunol ; 111: 189-200, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33588082

RESUMO

Acetylcholine (Ach) is the main neurotransmitter in the neuronal cholinergic system and also works as a signaling molecule in non-neuronal cells and tissues. The diversity of signaling pathways mediated by Ach provides a basis for understanding the biology of the cholinergic epithelial cells and immune cells in the gill of the species studied. NECs in the gill were not found surprisingly, but specialized cells showing the morphological, histochemical and ultrastructural characteristics of eosinophils were located in the gill filaments and respiratory lamellae. Much remains unknown about the interaction between the nerves and eosinophils that modulate both the release of acetylcholine and its nicotinic and muscarinic receptors including the role of acetylcholine in the mechanisms of O2 chemosensing. In this study we report for the first time the expression of Ach in the pavement cells of the gill lamellae in fish, the mast cells associated with eosinophils and nerve interaction for both immune cell types, in the gill of the extant butterfly fish Pantodon buchholzi. Multiple roles have been hypothesized for Ach and alpha nAChR in the gills. Among these there are the possible involvement of the pavement cells of the gill lamellae as O2 chemosensitive cells, the interaction of Ach positive mast cells with eosinophils and interaction of eosinophils with nerve terminals. This could be related to the use of the vesicular acetylcholine transporter (VAChT) and the alpha 2 subunit of the acetylcholine nicotinic receptor (alpha 2 nAChR). These data demonstrate the presence of Ach multiple sites of neuronal and non-neuronal release and reception within the gill and its ancestral signaling that arose during the evolutionary history of this conservative fish species.


Assuntos
Acetilcolina/metabolismo , Peixes/imunologia , Sistema Imunitário/metabolismo , Oxigênio/metabolismo , Animais , Feminino , Peixes/classificação , Brânquias , Masculino , Oxigênio/imunologia , Filogenia
8.
J Exp Biol ; 218(Pt 23): 3746-53, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26486367

RESUMO

Nitric oxide (NO) is a gaseous neurotransmitter, which, in adult mammals, modulates the acute hypoxic ventilatory response; its role in the control of breathing in fish during development is unknown. We addressed the interactive effects of developmental age and NO in the control of piscine breathing by measuring the ventilatory response of zebrafish (Danio rerio) adults and larvae to NO donors and by inhibiting endogenous production of NO. In adults, sodium nitroprusside (SNP), a NO donor, inhibited ventilation; the extent of the ventilatory inhibition was related to the pre-existing ventilatory drive, with the greatest inhibition exhibited during exposure to hypoxia (PO2=5.6 kPa). Inhibition of endogenous NO production using L-NAME suppressed the hypoventilatory response to hyperoxia, supporting an inhibitory role of NO in adult zebrafish. Neuroepithelial cells (NECs), the putative oxygen chemoreceptors of fish, contain neuronal nitric oxide synthase (nNOS). In zebrafish larvae at 4 days post-fertilization, SNP increased ventilation in a concentration-dependent manner. Inhibition of NOS activity with L-NAME or knockdown of nNOS inhibited the hypoxic (PO2=3.5 kPa) ventilatory response. Immunohistochemistry revealed the presence of nNOS in the NECs of larvae. Taken together, these data suggest that NO plays an inhibitory role in the control of ventilation in adult zebrafish, but an excitatory role in larvae.


Assuntos
Óxido Nítrico/fisiologia , Oxigênio/metabolismo , Peixe-Zebra/fisiologia , Animais , Hipóxia Celular , Células Quimiorreceptoras/fisiologia , Brânquias/fisiologia , Larva/fisiologia , NG-Nitroarginina Metil Éster/farmacologia , Células Neuroepiteliais/efeitos dos fármacos , Células Neuroepiteliais/fisiologia , Doadores de Óxido Nítrico/farmacologia , Óxido Nítrico Sintase Tipo I/análise , Nitroprussiato/farmacologia
9.
Pharmaceuticals (Basel) ; 17(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-39065709

RESUMO

BACKGROUND: Numerous studies highlight the critical role that neural histamine plays in feeding behavior, which is controlled by central histamine H3 and H1 receptors. This is the fundamental motivation for the increased interest in creating histamine H3 receptor antagonists as anti-obesity medications. On the other hand, multiple other neurotransmitter systems have been identified as pharmacotherapeutic targets for obesity, including sigma-2 receptor systems. Interestingly, in our previous studies in the rat excessive eating model, we demonstrated a significant reduction in the development of obesity using dual histamine H3/sigma-2 receptor ligands. Moreover, we showed that compound KSK-94 (structural analog of Abbott's A-331440) reduced the number of calories consumed, and thus acted as an anorectic compound. Therefore, in this study, we extended the previous research and studied the influence of KSK-94 on adipose tissue collected from animals from our previous experiment. METHODS: Visceral adipose tissue was collected from four groups of rats (standard diet + vehicle, palatable diet + vehicle, palatable diet + KSK-94, and palatable diet + bupropion/naltrexone) and subjected to biochemical, histopathological, and immunohistochemical studies. RESULTS: The obtained results clearly indicate that compound KSK-94 prevented the hypertrophy and inflammation of visceral adipose tissue, normalized the levels of leptin, resistin and saved the total reduction capacity of adipose tissue, being more effective than bupropion/naltrexon in these aspects. Moreover, KSK-94 may induce browning of visceral white adipose tissue. CONCLUSION: Our study suggests that dual compounds with a receptor profile like KSK-94, i.e., targeting histamine H3 receptor and, to a lesser extent, sigma-2 receptor, could be attractive therapeutic options for patients at risk of developing obesity or with obesity and some metabolic disorders. However, more studies are required to determine its safety profile and the exact mechanism of action of KSK-94.

10.
Microsc Res Tech ; 87(9): 2103-2112, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38683022

RESUMO

The striped dolphin (Stenella coeruleoalba) is a medium-sized pelagic dolphin with a single external nasal opening (blowhole) located in the rostral and dorsal regions of the skull. The nasal cavity is divided into three sections: the olfactory, respiratory, and vestibular areas. The surface epithelium lining the regio vestibularis is the first tissue in the nose to be directly affected by environmental antigens. Cetaceans have a significant amount of mucosa-associated lymphoid tissue (MALT) located throughout their bodies. The lymphoid tissue found in the nasal mucosa is known as nose- or nasopharynx-associated lymphoid tissue (NALT). NALT has not yet been studied in dolphins, but it has been identified and documented in humans and laboratory rodents. This study utilized toll-like receptor 2 (TLR2), CD4, Langerin/CD207, and inducible nitric oxide synthase to characterize, for the first time, immune cells in the mucosal regio vestibularis of the S. coeruleoalba nasal cavity using confocal microscopy immunofluorescence techniques. The findings revealed scattered immune cells immunoreactive to the tested antibodies, present in both the epithelial tissue lining the nasal cavity vestibulum and the underlying connective tissue. This study enhances our comprehension of the immune system of cetaceans. RESEARCH HIGHLIGHTS: This study provides new insights into NALT in S. coeruleoalba. This research deepens the knowledge of the skin of cetaceans.


Assuntos
Imuno-Histoquímica , Tecido Linfoide , Cavidade Nasal , Stenella , Animais , Cavidade Nasal/anatomia & histologia , Tecido Linfoide/anatomia & histologia , Stenella/anatomia & histologia , Mucosa Nasal , Microscopia Confocal , Óxido Nítrico Sintase Tipo II/metabolismo , Antígenos CD4/metabolismo , Antígenos CD4/análise , Golfinhos/anatomia & histologia
11.
Biology (Basel) ; 13(4)2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38666822

RESUMO

The amphibian taxon includes three orders that present different morphological characteristics: Anura, Caudata, and Apoda. Their skin has a crucial role: it acts as an immune organ constituting a physical, chemical, immunological, and microbiological barrier to pathogen insult and conducts essential physiological processes. Amphibians have developed specialized features to protect the vulnerable skin barrier, including a glandular network beneath the skin surface that can produce antimicrobial and toxic substances, thus contributing to the defense against pathogens and predators. This study aims to characterize Langerhans cells in the skin of Lithobates catesbeianus (order: Anura; Shaw, 1802), Amphiuma means (order: Caudata; Garden, 1821), and Typhlonectes natans (order: Apoda; Fischer, 1880) with the following antibodies: Langerin/CD207 (c-type lectin), Major Histocompatibility Complex (MHC)II, and Toll-like receptor (TLR)2 (expressed by different types of DCs). Our results showed Langerhans cells positive for Langerin CD/207 in the epidermis of the three species; moreover, some antigen-presenting cells (APCs) in the connective tissue expressed TLR2 and MHCII. The distribution of the Langerhans cells is very similar in the three amphibians examined, despite their different habitats. A greater knowledge of the amphibian immune system could be useful to better understand the phylogeny of vertebrates and to safeguard amphibians from population declines. Furthermore, the similarities between amphibians' and human skin concerning immunological features may be useful in both biology and translational medicine.

12.
Toxics ; 11(9)2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37755742

RESUMO

The introduction of pollutants, such as thiacloprid and benzo[a]pyrene (B[a]P), into the waters of urbanized coastal and estuarine areas through fossil fuel spills, domestic and industrial waste discharges, atmospheric inputs, and continental runoff poses a major threat to the fauna and flora of the aquatic environment and can have a significant impact on the internal defense system of invertebrates such as mussels. Using monoclonal and polyclonal anti-Toll-like receptor 2 (TLR2) and anti-inducible nitric oxide synthetase (iNOS) antibodies for the first time, this work aims to examine hemocytes in the mantle and gills of M. galloprovincialis as biomarkers of thiacloprid and B[a]P pollution and analyze their potential synergistic effect. To pursue this objective, samples were exposed to the pollutants, both individually and simultaneously. Subsequently, oxidative stress biomarkers were evaluated by enzymatic analysis, while tissue changes and the number of hemocytes in the different contaminated groups were assessed via histomorphological and immunohistochemical analyses. Our findings revealed that in comparison to a single exposure, the two pollutants together significantly elevated oxidative stress. Moreover, our data may potentially enhance knowledge on how TLR2 and iNOS work as part of the internal defense system of bivalves. This would help in creating new technologies and strategies, such as biosensors, that are more suitable for managing water pollution, and garnering new details on the condition of the marine ecosystem.

13.
Acta Histochem ; 125(8): 152115, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37979446

RESUMO

Crohn's disease (CD) and ulcerative colitis (UC) are both inflammatory bowel diseases (IBD). Unlike UC, which is limited to the mucosa of the colon, CD inflammation is characterized by chronic mucosal ulcerations affecting the entire gastrointestinal tract. Goblet cells (GCs) can be found in some lining epithelia, particularly in the respiratory and digestive tracts. GCs represent the main source of mucin that are the significant components of the mucus layer; hypertrophy of GCs and an increase in mucin production are observed in many enteric infections. The cytoplasm of goblet cells may also contain neuropeptides, such as serotonin, that can be altered in inflammatory bowel disease (IBD). The defense system of the gut is represented by the intestinal mucosal barrier, its protective function is strictly connected to the regulation of the mucus layer and the coordination of the neuro-immune response. Paraformaldehyde-fixed intestinal tissues, obtained from fifteen patients with Crohn's disease, were analyzed by immunostaining for MUC2, MUC4, 5-HT, and VAChT. This study aims to define the link between neuropeptides and mucins in mucous cells and their involvement in the inflammation process. Our results showed in mucous cells of Crohn's disease (CD) patients a high expression of MUC4 and a decrease in the expression of vesicular acetylcholine transporter (VAChT) demonstrating the presence of an inflammatory state.


Assuntos
Colite Ulcerativa , Doença de Crohn , Doenças Inflamatórias Intestinais , Neuropeptídeos , Humanos , Doença de Crohn/metabolismo , Mucinas/metabolismo , Células Caliciformes/metabolismo , Doenças Inflamatórias Intestinais/metabolismo , Colite Ulcerativa/metabolismo , Mucosa Intestinal/metabolismo , Inflamação/metabolismo , Neuropeptídeos/metabolismo
14.
Acta Histochem ; 125(3): 152028, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37075649

RESUMO

Toll-like receptors (TLRs) are essential for identifying and detecting pathogen-associated molecular patterns (PAMPs) produced by a variety of pathogens, including viruses and bacteria. Since TLR2 is the only TLR capable of creating functional heterodimers with more than two other TLR types, it is very important for vertebrate immunity. TLR2 not only broadens the variety of PAMPs that it can recognize but has also the potential to diversify the subsequent signaling cascades. TLR2 is ubiquitous, which is consistent with the wide variety of tasks and functions it serves. Immune cells, endothelial cells, and epithelial cells have all been found to express TLR2. This review aims to gather currently available information about the preservation of this intriguing immunological molecule in the phylum of vertebrates.


Assuntos
Moléculas com Motivos Associados a Patógenos , Receptor 2 Toll-Like , Animais , Células Endoteliais/metabolismo , Receptores Toll-Like/metabolismo , Vertebrados/metabolismo , Imunidade Inata
15.
Zoological Lett ; 9(1): 5, 2023 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-36871038

RESUMO

Metazoans have several mechanisms of internal defense for their survival. The internal defense system evolved alongside the organisms. Annelidae have circulating coelomocytes that perform functions comparable to the phagocytic immune cells of vertebrates. Several studies have shown that these cells are involved in phagocytosis, opsonization, and pathogen recognition processes. Like vertebrate macrophages, these circulating cells that permeate organs from the coelomic cavity capture or encapsulate pathogens, reactive oxygen species (ROS), and nitric oxide (NO). Furthermore, they produce a range of bioactive proteins involved in immune response and perform detoxification functions through their lysosomal system. Coelomocytes can also participate in lithic reactions against target cells and the release of antimicrobial peptides. Our study immunohistochemically identify coelomocytes of Lumbricus terrestris scattered in the epidermal and the connective layer below, both in the longitudinal and in the smooth muscle layer, immunoreactive for TLR2, CD14 and α-Tubulin for the first time. TLR2 and CD14 are not fully colocalized with each other, suggesting that these coelomocytes may belong to two distinct families. The expression of these immune molecules on Annelidae coelomocytes confirms their crucial role in the internal defense system of these Oligochaeta protostomes, suggesting a phylogenetic conservation of these receptors. These data could provide further insights into the understanding of the internal defense system of the Annelida and of the complex mechanisms of the immune system in vertebrates.

16.
Acta Histochem ; 125(3): 152031, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37075648

RESUMO

The integument acts as a barrier to protect the body from harmful pathogenic infectious agents, parasites, UV rays, trauma, and germs. The integument of invertebrates and vertebrates are structurally different: while invertebrates usually have a simple monolayer epidermis frequently covered by mucus, cuticles, or mineralized structures, vertebrates possess a multilayered epidermis with several specialized cells. This study aims to describe by morphological, histological, and immunohistochemical analyses, the morpho-structural adaptations throughout evolution of the integument of gastropod Aplysia depilans (Gmelin, 1791), ascidian Styela plicata (Lesuer, 1823), myxine hagfish Eptatretus cirrhatus (Forster, 1801) and teleost Heteropneustes fossilis (Bloch, 1794) for the first time, with special reference to sensory epidermal cells. Different types of cells could be identified that varied according to the species; including mucous cells, serous glandular cells, clavate cells, club cells, thread cells, and support cells. In all integuments of the specimens analyzed, sensory solitary cells were identified in the epidermis, immunoreactive to serotonin and calbindin. Our study provided an essential comparison of integuments, adding new information about sensory epidermal cells phylogenetic conservation and on the structural changes that invertebrates and vertebrates have undergone during evolution.


Assuntos
Organismos Aquáticos , Pele , Animais , Filogenia , Epiderme , Vertebrados
17.
Nat Prod Res ; 36(10): 2672-2691, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-33949266

RESUMO

Viral diseases have always played an important role in public and individual health. Since December 2019, the world is facing a pandemic of SARS-CoV-2, a coronavirus that results in a syndrome known as COVID-19. Several studies were conducted to implement antiviral drug therapy, until the arrival of SARS-CoV-2 vaccines. Numerous scientific investigations have considered some nutraceuticals as an additional treatment of COVID-19 patients to improve their clinical picture. In this review, we would like to emphasize the studies conducted to date about this issue and try to understand whether the use of nutraceuticals as a supplementary therapy to COVID-19 may be a valid and viable avenue. Based on the results obtained so far, quercetin, astaxanthin, luteolin, glycyrrhizin, lactoferrin, hesperidin and curcumin have shown encouraging data suggesting their use to prevent and counteract the symptoms of this pandemic infection.


Assuntos
Tratamento Farmacológico da COVID-19 , Vacinas contra COVID-19 , Suplementos Nutricionais , Humanos , Pandemias/prevenção & controle , SARS-CoV-2
18.
Microsc Res Tech ; 85(7): 2651-2658, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35394101

RESUMO

The endostyle is the first component of the ascidian digestive tract, it is shaped like a through and is located in the pharynx's ventral wall. This organ is divided longitudinally into nine zones that are parallel to each other. Each zone's cells are physically and functionally distinct. Support elements are found in zones 1, 3, and 5, while mucoproteins secreting elements related to the filtering function are found in zones 2, 4, and 6. Zones 7, 8, and 9, which are located in the lateral dorsal section of the endostyle, include cells with high iodine and peroxidase concentrations. Immunohistochemical technique using the following antibodies, Toll-like receptor 2 (TLR-2) and vasoactive intestinal peptide (VIP), and lectin histochemistry (WGA-wheat-germagglutinin), were used in this investigation to define immune cells in the endostyle of Styela plicata (Lesueur, 1823). Our results demonstrate the presence of immune cells in the endostyle of S. plicata, highlighting that innate immune mechanisms are highly conserved in the phylogeny of the chordates. RESEARCH HIGHLIGHTS: Immune cells positive to TLR-2 and VIP in the endostyle of Styela plicata. Expression of WGA in several zones of endostyle. Use of comparative biology to improve the knowledge about immunology in ascidians.


Assuntos
Urocordados , Animais , Filogenia , Receptor 2 Toll-Like , Urocordados/metabolismo , Peptídeo Intestinal Vasoativo/metabolismo
19.
Acta Histochem ; 124(3): 151876, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35303512

RESUMO

Rodlet cells (RCs) have always been an enigma for scientists. RCs have been given a variety of activities over the years, including ion transport, osmoregulation, and sensory function. These cells, presumably as members of the granulocyte line, are present only in teleosts and play a role in the innate immune response. RCs are migratory cells found in a variety of organs, including skin, vascular, digestive, uropoietic, reproductive, and respiratory systems, and present distinct physical properties that make them easily recognizable in tissues and organs. The development of RCs can be divided into four stages: granular, transitional, mature, and ruptured, having different morphological characteristics. Our study aims to characterize the different stages of these cells by histomorphological and histochemical techniques. Furthermore, we characterized these cells at all stages with peroxidase and fluorescence immunohistochemical techniques using different antibodies: S100, tubulin, α-SMA, piscidin, and for the first time TLR-2. From our results, the immunoreactivity of these cells to the antibodies performed may confirm that RCs play a role in fish defense mechanisms, helping to expand the state of the art on immunology and immune cells of teleosts.


Assuntos
Carpa Dourada , Rim , Animais , Anticorpos , Imunidade Inata , Microscopia Confocal
20.
Toxics ; 10(5)2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35622632

RESUMO

Industrialization has resulted in a massive increase in garbage output, which is frequently discharged or stored in waterways like rivers and seas. Due to their toxicity, durability, bioaccumulation, and biomagnification, heavy metals (such as mercury, cadmium, and lead) have been identified as strong biological poisons. Their presence in the aquatic environment has the potential to affect water quality parameters and aquatic life in general. Teleosts' histopathology provides a sensitive indicator of pollutant-induced stress, because their organs have a central role in the transformation of different active chemical compounds in the aquatic environment. In particular, the gills, kidneys, and liver are placed at the center of toxicological studies. The purpose of this study is to examine the morphological changes caused by heavy metals in the kidney and gills of Boops boops, with a focus on melanomacrophages centers (MMCs) and rodlet cells (RCs) as environmental biomarkers, using histological and histochemical stainings (hematoxylin/eosin, Van Gieson trichrome, Periodic Acid Schiff reaction, and Alcian Blue/PAS 2.5), and immunoperoxidase methods. Our findings show an increase of MMCs and RCs linked to higher exposure to heavy metals, confirming the role of these aggregates and cells as reliable biomarkers of potential aquatic environmental changes reflected in fish fauna. The cytological study of RCs and MMCs could be important in gaining a better understanding of the complicated immune systems of teleosts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA