Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 175
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
J Biol Chem ; : 107536, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38971317

RESUMO

Protein disulfide isomerase-A1 (PDIA1) is a master regulator of oxidative protein folding and proteostasis in the endoplasmic reticulum (ER). However, PDIA1 can reach the extracellular space, impacting thrombosis and other pathophysiological phenomena. Whether PDIA1 is externalized via passive release or active secretion is not known. To investigate how PDIA1 negotiates its export, we generated a tagged variant that undergoes N-glycosylation in the ER (Glyco-PDIA1). Addition of N- glycans does not alter its enzymatic functions. Upon either deletion of its KDEL ER-localization motif or silencing of KDEL receptors, Glyco-PDIA1 acquires complex glycans in the Golgi and is secreted. In control cells, however, Glyco-PDIA1 is released with endoglycosidase-H sensitive glycans, implying that it does not follow the classical ER-Golgi route, nor does it encounter glycanases in the cytosol. Extracellular Glyco-PDIA1 is more abundant than actin, lactate dehydrogenase or other proteins released by damaged or dead cells, suggesting active transport through a Golgi-independent route. The strategy we describe herein can be extended to dissect how select ER-residents reach the extracellular space.

2.
Int J Mol Sci ; 22(17)2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34502464

RESUMO

Melanoma is the most aggressive type of skin cancer due to its high capability of developing metastasis and acquiring chemoresistance. Altered redox homeostasis induced by increased reactive oxygen species is associated with melanomagenesis through modulation of redox signaling pathways. Dysfunctional endothelial nitric oxide synthase (eNOS) produces superoxide anion (O2-•) and contributes to the establishment of a pro-oxidant environment in melanoma. Although decreased tetrahydrobiopterin (BH4) bioavailability is associated with eNOS uncoupling in endothelial and human melanoma cells, in the present work we show that eNOS uncoupling in metastatic melanoma cells expressing the genes from de novo biopterin synthesis pathway Gch1, Pts, and Spr, and high BH4 concentration and BH4:BH2 ratio. Western blot analysis showed increased expression of Nos3, altering the stoichiometry balance between eNOS and BH4, contributing to NOS uncoupling. Both treatment with L-sepiapterin and eNOS downregulation induced increased nitric oxide (NO) and decreased O2• levels, triggering NOS coupling and reducing cell growth and resistance to anoikis and dacarbazine chemotherapy. Moreover, restoration of eNOS activity impaired tumor growth in vivo. Finally, NOS3 expression was found to be increased in human metastatic melanoma samples compared with the primary site. eNOS dysfunction may be an important mechanism supporting metastatic melanoma growth and hence a potential target for therapy.


Assuntos
Biopterinas/biossíntese , Regulação para Baixo , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Melanoma/enzimologia , Proteínas de Neoplasias/biossíntese , Óxido Nítrico Sintase Tipo III/biossíntese , Animais , Biopterinas/genética , Feminino , Humanos , Melanoma/genética , Melanoma/patologia , Camundongos , Metástase Neoplásica , Proteínas de Neoplasias/genética , Óxido Nítrico Sintase Tipo III/genética
3.
BMC Genomics ; 21(1): 766, 2020 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-33148170

RESUMO

BACKGROUND: Protein Disulfide Isomerases are thiol oxidoreductase chaperones from thioredoxin superfamily with crucial roles in endoplasmic reticulum proteostasis, implicated in many diseases. The family prototype PDIA1 is also involved in vascular redox cell signaling. PDIA1 is coded by the P4HB gene. While forced changes in P4HB gene expression promote physiological effects, little is known about endogenous P4HB gene regulation and, in particular, gene modulation by alternative splicing. This study addressed the P4HB splice variant landscape. RESULTS: Ten protein coding sequences (Ensembl) of the P4HB gene originating from alternative splicing were characterized. Structural features suggest that except for P4HB-021, other splice variants are unlikely to exert thiol isomerase activity at the endoplasmic reticulum. Extensive analyses using FANTOM5, ENCODE Consortium and GTEx project databases as RNA-seq data sources were performed. These indicated widespread expression but significant variability in the degree of isoform expression among distinct tissues and even among distinct locations of the same cell, e.g., vascular smooth muscle cells from different origins. P4HB-02, P4HB-027 and P4HB-021 were relatively more expressed across each database, the latter particularly in vascular smooth muscle. Expression of such variants was validated by qRT-PCR in some cell types. The most consistently expressed splice variant was P4HB-021 in human mammary artery vascular smooth muscle which, together with canonical P4HB gene, had its expression enhanced by serum starvation. CONCLUSIONS: Our study details the splice variant landscape of the P4HB gene, indicating their potential role to diversify the functional reach of this crucial gene. P4HB-021 splice variant deserves further investigation in vascular smooth muscle cells.


Assuntos
Pró-Colágeno-Prolina Dioxigenase , Isomerases de Dissulfetos de Proteínas , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Humanos , Mutação , Pró-Colágeno-Prolina Dioxigenase/genética , Pró-Colágeno-Prolina Dioxigenase/metabolismo , Isomerases de Dissulfetos de Proteínas/genética , Transdução de Sinais
4.
Mol Hum Reprod ; 26(12): 938-952, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-33118034

RESUMO

Offspring born to obese and diabetic mothers are prone to metabolic diseases, a phenotype that has been linked to mitochondrial dysfunction and endoplasmic reticulum (ER) stress in oocytes. In addition, metabolic diseases impact the architecture and function of mitochondria-ER contact sites (MERCs), changes which associate with mitofusin 2 (MFN2) repression in muscle, liver and hypothalamic neurons. MFN2 is a potent modulator of mitochondrial metabolism and insulin signaling, with a key role in mitochondrial dynamics and tethering with the ER. Here, we investigated whether offspring born to mice with MFN2-deficient oocytes are prone to obesity and diabetes. Deletion of Mfn2 in oocytes resulted in a profound transcriptomic change, with evidence of impaired mitochondrial and ER function. Moreover, offspring born to females with oocyte-specific deletion of Mfn2 presented increased weight gain and glucose intolerance. This abnormal phenotype was linked to decreased insulinemia and defective insulin signaling, but not mitochondrial and ER defects in offspring liver and skeletal muscle. In conclusion, this study suggests a link between disrupted mitochondrial/ER function in oocytes and increased risk of metabolic diseases in the progeny. Future studies should determine whether MERC architecture and function are altered in oocytes from obese females, which might contribute toward transgenerational transmission of metabolic diseases.


Assuntos
GTP Fosfo-Hidrolases/metabolismo , Oócitos/metabolismo , Animais , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático/fisiologia , Feminino , GTP Fosfo-Hidrolases/genética , Homeostase/fisiologia , Camundongos , Mitocôndrias/metabolismo , Dinâmica Mitocondrial/fisiologia , Músculo Esquelético/metabolismo , Transdução de Sinais
5.
FASEB J ; 33(12): 13176-13188, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31480917

RESUMO

Changes in mitochondrial size and shape have been implicated in several physiologic processes, but their role in mitochondrial Ca2+ uptake regulation and overall cellular Ca2+ homeostasis is largely unknown. Here we show that modulating mitochondrial dynamics toward increased fusion through expression of a dominant negative (DN) form of the fission protein [dynamin-related protein 1 (DRP1)] markedly increased both mitochondrial Ca2+ retention capacity and Ca2+ uptake rates in permeabilized C2C12 cells. Similar results were seen using the pharmacological fusion-promoting M1 molecule. Conversely, promoting a fission phenotype through the knockdown of the fusion protein mitofusin (MFN)-2 strongly reduced the mitochondrial Ca2+ uptake speed and capacity in these cells. These changes were not dependent on modifications in mitochondrial calcium uniporter expression, inner membrane potentials, or the mitochondrial permeability transition. Implications of mitochondrial morphology modulation on cellular calcium homeostasis were measured in intact cells; mitochondrial fission promoted lower basal cellular calcium levels and lower endoplasmic reticulum (ER) calcium stores, as indicated by depletion with thapsigargin. Indeed, mitochondrial fission was associated with ER stress. Additionally, the calcium-replenishing process of store-operated calcium entry was impaired in MFN2 knockdown cells, whereas DRP1-DN-promoted fusion resulted in faster cytosolic Ca2+ increase rates. Overall, our results show a novel role for mitochondrial morphology in the regulation of mitochondrial Ca2+ uptake, which impacts cellular Ca2+ homeostasis.-Kowaltowski, A. J., Menezes-Filho, S. L., Assali, E. A., Gonçalves, I. G., Cabral-Costa, J. V., Abreu, P., Miller, N., Nolasco, P., Laurindo, F. R. M., Bruni-Cardoso, A., Shirihai, O. Mitochondrial morphology regulates organellar Ca2+ uptake and changes cellular Ca2+ homeostasis.


Assuntos
Cálcio/metabolismo , Mitocôndrias/metabolismo , Animais , Transporte Biológico/efeitos dos fármacos , Linhagem Celular , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Homeostase , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Potencial da Membrana Mitocondrial/fisiologia , Camundongos , Mitocôndrias/efeitos dos fármacos , Reação em Cadeia da Polimerase em Tempo Real , Tapsigargina/farmacologia
6.
Am J Physiol Cell Physiol ; 317(2): C326-C338, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31067084

RESUMO

Atherosclerotic plaque development is closely associated with the hemodynamic forces applied to endothelial cells (ECs). Among these, shear stress (SS) plays a key role in disease development since changes in flow intensity and direction could stimulate an atheroprone or atheroprotective phenotype. ECs under low or oscillatory SS (LSS) show upregulation of inflammatory, adhesion, and cellular permeability molecules. On the contrary, cells under high or laminar SS (HSS) increase their expression of protective and anti-inflammatory factors. The mechanism behind SS regulation of an atheroprotective phenotype is not completely elucidated. Here we used proteomics and metabolomics to better understand the changes in endothelial cells (human umbilical vein endothelial cells) under in vitro LSS and HSS that promote an atheroprone or atheroprotective profile and how these modifications can be connected to atherosclerosis development. Our data showed that lipid metabolism, in special cholesterol metabolism, was downregulated in cells under LSS. The low-density lipoprotein receptor (LDLR) showed significant alterations both at the quantitative expression level as well as regarding posttranslational modifications. Under LSS, LDLR was seen at lower concentrations and with a different glycosylation profile. Finally, modulating LDLR with atorvastatin led to the recapitulation of a HSS metabolic phenotype in EC under LSS. Altogether, our data suggest that there is significant modulation of lipid metabolism in endothelial cells under different SS intensities and that this could contribute to the atheroprone phenotype of LSS. Statin treatment was able to partially recover the protective profile of these cells.


Assuntos
Aterosclerose/metabolismo , Hemodinâmica , Células Endoteliais da Veia Umbilical Humana/metabolismo , Metabolismo dos Lipídeos , Lipidômica/métodos , Mecanotransdução Celular , Proteômica/métodos , Aterosclerose/tratamento farmacológico , Aterosclerose/patologia , Aterosclerose/fisiopatologia , Atorvastatina/farmacologia , Células Cultivadas , Colesterol/metabolismo , Glicosilação , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Mecanotransdução Celular/efeitos dos fármacos , Fenótipo , Placa Aterosclerótica , Processamento de Proteína Pós-Traducional , Receptores de LDL/metabolismo , Fluxo Sanguíneo Regional , Estresse Mecânico
7.
J Biol Chem ; 293(4): 1450-1465, 2018 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-29191937

RESUMO

Protein-disulfide isomerase (PDI) is a ubiquitous dithiol-disulfide oxidoreductase that performs an array of cellular functions, such as cellular signaling and responses to cell-damaging events. PDI can become dysfunctional by post-translational modifications, including those promoted by biological oxidants, and its dysfunction has been associated with several diseases in which oxidative stress plays a role. Because the kinetics and products of the reaction of these oxidants with PDI remain incompletely characterized, we investigated the reaction of PDI with the biological oxidant peroxynitrite. First, by determining the rate constant of the oxidation of PDI's redox-active Cys residues (Cys53 and Cys397) by hydrogen peroxide (k = 17.3 ± 1.3 m-1 s-1 at pH 7.4 and 25 °C), we established that the measured decay of the intrinsic PDI fluorescence is appropriate for kinetic studies. The reaction of these PDI residues with peroxynitrite was considerably faster (k = (6.9 ± 0.2) × 104 m-1 s-1), and both Cys residues were kinetically indistinguishable. Limited proteolysis, kinetic simulations, and MS analyses confirmed that peroxynitrite preferentially oxidizes the redox-active Cys residues of PDI to the corresponding sulfenic acids, which reacted with the resolving thiols at the active sites to produce disulfides (i.e. Cys53-Cys56 and Cys397-Cys400). A fraction of peroxynitrite, however, decayed to radicals that hydroxylated and nitrated other active-site residues (Trp52, Trp396, and Tyr393). Excess peroxynitrite promoted further PDI oxidation, nitration, inactivation, and covalent oligomerization. We conclude that these PDI modifications may contribute to the pathogenic mechanism of several diseases associated with dysfunctional PDI.


Assuntos
Ácido Peroxinitroso/química , Pró-Colágeno-Prolina Dioxigenase/química , Isomerases de Dissulfetos de Proteínas/química , Tolueno/análogos & derivados , Motivos de Aminoácidos , Humanos , Oxirredução , Tolueno/química
8.
Am J Physiol Heart Circ Physiol ; 316(3): H566-H579, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30499716

RESUMO

Although redox processes closely interplay with mechanoresponses to control vascular remodeling, redox pathways coupling mechanostimulation to cellular cytoskeletal organization remain unclear. The peri/epicellular pool of protein disulfide isomerase-A1 (pecPDIA1) supports postinjury vessel remodeling. Using distinct models, we investigated whether pecPDIA1 could work as a redox-dependent organizer of cytoskeletal mechanoresponses. In vascular smooth muscle cells (VSMCs), pecPDIA1 immunoneutralization impaired stress fiber assembly in response to equibiaxial stretch and, under uniaxial stretch, significantly perturbed cell repositioning perpendicularly to stretch orientation. During cyclic stretch, pecPDIA1 supported thiol oxidation of the known mechanosensor ß1-integrin and promoted polarized compartmentalization of sulfenylated proteins. Using traction force microscopy, we showed that pecPDIA1 organizes intracellular force distribution. The net contractile moment ratio of platelet-derived growth factor-exposed to basal VSMCs decreased from 0.90 ± 0.09 (IgG-exposed controls) to 0.70 ± 0.08 after pecPDI neutralization ( P < 0.05), together with an enhanced coefficient of variation for distribution of force modules, suggesting increased noise. Moreover, in a single cell model, pecPDIA1 neutralization impaired migration persistence without affecting total distance or velocity, whereas siRNA-mediated total PDIA1 silencing disabled all such variables of VSMC migration. Neither expression nor total activity of the master mechanotransmitter/regulator RhoA was affected by pecPDIA1 neutralization. However, cyclic stretch-induced focal distribution of membrane-bound RhoA was disrupted by pecPDI inhibition, which promoted a nonpolarized pattern of RhoA/caveolin-3 cluster colocalization. Accordingly, FRET biosensors showed that pecPDIA1 supports localized RhoA activity at cell protrusions versus perinuclear regions. Thus, pecPDI acts as a thiol redox-dependent organizer and noise reducer mechanism of cytoskeletal repositioning, oxidant generation, and localized RhoA activation during a variety of VSMC mechanoresponses. NEW & NOTEWORTHY Effects of a peri/epicellular pool of protein disulfide isomerase-A1 (pecPDIA1) during mechanoregulation in vascular smooth muscle cells (VSMCs) were highlighted using approaches such as equibiaxial and uniaxial stretch, random single cell migration, and traction force microscopy. pecPDIA1 regulates organization of the cytoskeleton and minimizes the noise of cell alignment, migration directionality, and persistence. pecPDIA1 mechanisms involve redox control of ß1-integrin and localized RhoA activation. pecPDIA1 acts as a novel organizer of mechanoadaptation responses in VSMCs.


Assuntos
Adaptação Fisiológica/fisiologia , Citoesqueleto/fisiologia , Miócitos de Músculo Liso/fisiologia , Isomerases de Dissulfetos de Proteínas/fisiologia , Citoesqueleto de Actina/fisiologia , Animais , Fenômenos Biomecânicos , Movimento Celular , Células Cultivadas , Inativação Gênica , Integrina beta1/metabolismo , Músculo Liso Vascular/metabolismo , Oxidantes/metabolismo , Pressorreceptores , Isomerases de Dissulfetos de Proteínas/genética , Coelhos , Proteína rhoA de Ligação ao GTP/metabolismo
9.
Am J Physiol Heart Circ Physiol ; 317(7): H1-H12, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31002284

RESUMO

The purpose of the present study was to test the hypothesis that doxorubicin (DX) and cyclophosphamide (CY) adjuvant chemotherapy (CHT) acutely impairs neurovascular and hemodynamic responses in women with breast cancer. Sixteen women (age: 47.0 ± 2.0 yr; body mass index: 24.2 ± 1.5 kg/m) with stage II-III breast cancer and indication for adjuvant CHT underwent two experimental sessions, saline (SL) and CHT. In the CHT session, DX (60 mg/m2) and CY (600 mg/m2) were administered over 45 min. In the SL session, a matching SL volume was infused in 45 min. Muscle sympathetic nerve activity (MSNA) from peroneal nerve (microneurography), calf blood flow (CBF; plethysmography) and calf vascular conductance (CVC), heart rate (HR; electrocardiography), and beat-to-beat blood pressure (BP; finger plethysmography) were measured at rest before, during, and after each session. Venous blood samples (5 ml) were collected before and after both sessions for assessment of circulating endothelial microparticles (EMPs; flow cytometry), a surrogate marker for endothelial damage. MSNA and BP responses were increased (P < 0.001), whereas CBF and CVC responses were decreased (P < 0.001), during and after CHT session when compared with SL session. Interestingly, the vascular alterations were also observed at the molecular level through an increased EMP response to CHT (P = 0.03, CHT vs. SL session). No difference in HR response was observed (P > 0.05). Adjuvant CHT with DX and CY in patients treated for breast cancer increases sympathetic nerve activity and circulating EMP levels and, in addition, reduces muscle vascular conductance and elevates systemic BP. These responses may be early signs of CHT-induced cardiovascular alterations and may represent potential targets for preventive interventions. NEW & NOTEWORTHY It is known that chemotherapy regimens increase the risk of cardiovascular events in patients treated for cancer. Here, we identified that a single cycle of adjuvant chemotherapy with doxorubicin and cyclophosphamide in women treated for breast cancer dramatically increases sympathetic nerve activity and circulating endothelial microparticle levels, reduces the muscle vascular conductance, and elevates systemic blood pressure.


Assuntos
Antineoplásicos/efeitos adversos , Neoplasias da Mama/tratamento farmacológico , Ciclofosfamida/efeitos adversos , Doxorrubicina/efeitos adversos , Endotélio Vascular/efeitos dos fármacos , Frequência Cardíaca/efeitos dos fármacos , Sistema Nervoso Simpático/efeitos dos fármacos , Adulto , Antineoplásicos/administração & dosagem , Antineoplásicos/uso terapêutico , Micropartículas Derivadas de Células/efeitos dos fármacos , Quimioterapia Adjuvante , Ciclofosfamida/administração & dosagem , Ciclofosfamida/uso terapêutico , Doxorrubicina/administração & dosagem , Doxorrubicina/uso terapêutico , Feminino , Humanos , Pessoa de Meia-Idade , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/inervação , Nervo Fibular/fisiologia
10.
Adv Exp Med Biol ; 1127: 67-82, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31140172

RESUMO

The liver plays a capital role in the control of whole body energy homeostasis through the metabolization of dietary carbohydrates and lipids. However, under excess macronutrient uptake, those pathways overcharge nucleus-to-endoplasmic reticulum (ER) traffic pathways, leading to luminal overload of unfolded proteins which activates a series of adaptive signaling pathways known as unfolded protein response (UPR). The UPR is a central network mechanism for cellular stress adaptation, however far from a global nonspecific all-or-nothing response. Such a complex signaling network is able to display considerable specificity of responses, with activation of specific signaling branches trimmed for distinct types of stimuli. This makes the UPR a fundamental mechanism underlying metabolic processes and diseases, especially those related to lipid and carbohydrate metabolism. Thus, for a better understanding of the role of UPR on the physiopathology of lipid metabolism disorders, the concepts discussed along this chapter will demonstrate how several metabolic derangements activate UPR components and, in turn, how UPR triggers several metabolic adaptations through its component signaling proteins. This dual role of UPR on lipid metabolism will certainly foment the pursuit of an answer for the question: is UPR cause or consequence of lipid and lipoprotein metabolism disturbances?


Assuntos
Retículo Endoplasmático/metabolismo , Metabolismo dos Lipídeos , Lipoproteínas/metabolismo , Transdução de Sinais , Resposta a Proteínas não Dobradas
11.
Molecules ; 24(18)2019 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-31489892

RESUMO

Vascular smooth muscle cells (VSMCs) loaded with lipid droplets (LDs) are markers of atherosclerosis. In this disease, inflammatory Group IIA-secreted phospholipase A2s (GIIA sPLA2s) are highly expressed in VSMCs, but their actions in these cells are unknown. Here, we investigated the ability of myotoxin III (MT-III), an ophidian GIIA sPLA2 sharing structural and functional features with mammalian GIIA sPLA2s, to induce LD formation and lipid metabolism factors involved in this effect. Modulation of VSMC phenotypes by this sPLA2 was also evaluated. Incubation of VSMCs with MT-III significantly increased the number of LDs. MT-III upregulated scavenger receptor type 1 (SR-A1) and lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) protein expression and enhanced acetylated-low density lipoprotein (acLDL) uptake by VSMCs, revealing the ability of a GIIA PLA2 to modulate scavenger receptor activities. MT-III induced translocation and protein expression of PPAR-γ and -ß/δ. Inhibition of peroxisome proliferator-activated receptors (PPARs) and diacylglycerol O-acyltransferase (DGAT) and acyl-CoA:cholesterolacyltransferase (ACAT) enzymes abrogated MT-III-induced LD formation. Moreover, in response to MT-III, VSMCs acquired phagocytic activity and expressed macrophage markers CD68 and MAC-2. In conclusion, MT-III is able to stimulate VSMCs and recruit factors involved in lipid uptake and metabolism, leading to the formation of VSMC-derived foam cells with acquisition of macrophage-like markers and functions.


Assuntos
Transdiferenciação Celular/efeitos dos fármacos , Células Espumosas/citologia , Fosfolipases A2 do Grupo II/farmacologia , Músculo Liso Vascular/citologia , Animais , Células Cultivadas , Regulação da Expressão Gênica/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipoproteínas LDL/metabolismo , Masculino , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Fenótipo , Ratos , Receptores Depuradores Classe A/metabolismo , Receptores Depuradores Classe E/metabolismo
12.
Clin Sci (Lond) ; 132(10): 1069-1073, 2018 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-29802211

RESUMO

Cardiac hypertrophy (CH) is a major independent risk factor for heart failure and mortality. However, therapeutic interventions that target hypertrophy signaling in a load-independent way are unavailable. In a recent issue of Clinical Science (vol. 132, issue 6, 685-699), Ma et al. describe that the anti-inflammatory drug leflunomide markedly antagonized CH, dysfunction, and fibrosis induced by aortic banding or angiotensin-II in mice or by agonists in cultured cells. Unexpectedly, this occurred not via anti-inflammatory mechanisms but rather via inhibtion of Akt (protein kinase B, PKB) signaling. We further discuss the mechanisms underlying Akt activation and its effects on CH and review possible mechanisms of leflunomide effects. Despite some caveats, the availability of such a newly repurposed compound to treat CH can be a relevant advance.


Assuntos
Leflunomida , Proteínas Proto-Oncogênicas c-akt , Angiotensina II , Compostos de Anilina , Animais , Cardiomegalia , Crotonatos , Fibrose , Hidroxibutiratos , Camundongos , Nitrilas , Toluidinas
13.
Clin Sci (Lond) ; 132(12): 1257-1280, 2018 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-29967247

RESUMO

Thiol groups are crucially involved in signaling/homeostasis through oxidation, reduction, and disulphide exchange. The overall thiol pool is the resultant of several individual pools of small compounds (e.g. cysteine), peptides (e.g. glutathione), and thiol proteins (e.g. thioredoxin (Trx)), which are not in equilibrium and present specific oxidized/reduced ratios. This review addresses mechanisms and implications of circulating plasma thiol/disulphide redox pools, which are involved in several physiologic processes and explored as disease biomarkers. Thiol pools are regulated by mechanisms linked to their intrinsic reactivity against oxidants, concentration of antioxidants, thiol-disulphide exchange rates, and their dynamic release/removal from plasma. Major thiol couples determining plasma redox potential (Eh) are reduced cysteine (CyS)/cystine (the disulphide form of cysteine) (CySS), followed by GSH/disulphide-oxidized glutathione (GSSG). Hydrogen peroxide and hypohalous acids are the main plasma oxidants, while water-soluble and lipid-soluble small molecules are the main antioxidants. The thiol proteome and thiol-oxidoreductases are emerging investigative areas given their specific disease-related responses (e.g. protein disulphide isomerases (PDIs) in thrombosis). Plasma cysteine and glutathione redox couples exhibit pro-oxidant changes directly correlated with ageing/age-related diseases. We further discuss changes in thiol-disulphide redox state in specific groups of diseases: cardiovascular, cancer, and neurodegenerative. These results indicate association with the disease states, although not yet clear-cut to yield specific biomarkers. We also highlight mechanisms whereby thiol pools affect atherosclerosis pathophysiology. Overall, it is unlikely that a single measurement provides global assessment of plasma oxidative stress. Rather, assessment of individual thiol pools and thiol-proteins specific to any given condition has more solid and logical perspective to yield novel relevant information on disease risk and prognosis.


Assuntos
Doenças Cardiovasculares/sangue , Neoplasias/sangue , Compostos de Sulfidrila/sangue , Antioxidantes/metabolismo , Biomarcadores/sangue , Doenças Cardiovasculares/diagnóstico , Humanos , Neoplasias/diagnóstico , Oxidantes/sangue , Oxirredução , Estresse Oxidativo/fisiologia , S-Nitrosotióis/sangue
14.
Arch Biochem Biophys ; 617: 106-119, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-27889386

RESUMO

Protein disulfide isomerases are thiol oxidoreductase chaperones from thioredoxin superfamily. As redox folding catalysts from the endoplasmic reticulum (ER), their roles in ER-related redox homeostasis and signaling are well-studied. PDIA1 exerts thiol oxidation/reduction and isomerization, plus chaperone effects. Also, substantial evidence indicates that PDIs regulate thiol-disulfide switches in other cell locations such as cell surface and possibly cytosol. Subcellular PDI translocation routes remain unclear and seem Golgi-independent. The list of signaling and structural proteins reportedly regulated by PDIs keeps growing, via thiol switches involving oxidation, reduction and isomerization, S-(de)nytrosylation, (de)glutathyonylation and protein oligomerization. PDIA1 is required for agonist-triggered Nox NADPH oxidase activation and cell migration in vascular cells and macrophages, while PDIA1-dependent cytoskeletal regulation appears a converging pathway. Extracellularly, PDIs crucially regulate thiol redox signaling of thrombosis/platelet activation, e.g., integrins, and PDIA1 supports expansive caliber remodeling during injury repair via matrix/cytoskeletal organization. Some proteins display regulatory PDI-like motifs. PDI effects are orchestrated by expression levels or post-translational modifications. PDI is redox-sensitive, although probably not a mass-effect redox sensor due to kinetic constraints. Rather, the "all-in-one" organization of its peculiar redox/chaperone properties likely provide PDIs with precision and versatility in redox signaling, making them promising therapeutic targets.


Assuntos
Retículo Endoplasmático/metabolismo , Oxirredução , Pró-Colágeno-Prolina Dioxigenase/metabolismo , Isomerases de Dissulfetos de Proteínas/metabolismo , Animais , Citoesqueleto/metabolismo , Citosol/metabolismo , Dissulfetos/química , Homeostase , Humanos , Cinética , Camundongos , Chaperonas Moleculares/metabolismo , NADPH Oxidases/metabolismo , Peróxidos/química , Processamento de Proteína Pós-Traducional , Transdução de Sinais
15.
Biochim Biophys Acta Gen Subj ; 1861(5 Pt A): 1131-1139, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28215702

RESUMO

BACKGROUND: Nitroarachidonic acid (NO2AA) exhibits pleiotropic anti-inflammatory actions in a variety of cell types. We have recently shown that NO2AA inhibits phagocytic NADPH oxidase 2 (NOX2) by preventing the formation of the active complex. Recent work indicates the participation of protein disulfide isomerase (PDI) activity in NOX2 activation. Cysteine (Cys) residues at PDI active sites could be targets for NO2AA- nitroalkylation regulating PDI activity which could explain our previous observation. METHODS: PDI reductase and chaperone activities were assessed using the insulin and GFP renaturation methods in the presence or absence of NO2AA. To determine the covalent reaction with PDI as well as the site of reaction, the PEG-switch assay and LC-MS/MS studies were performed. RESULTS AND CONCLUSIONS: We determined that both activities of PDI were inhibited by NO2AA in a dose- and time- dependent manner and independent from release of nitric oxide. Since nitroalkenes are potent electrophiles and PDI has critical Cys residues for its activity, then formation of a covalent adduct between NO2AA and PDI is feasible. To this end we demonstrated the reversible covalent modification of PDI by NO2AA. Trypsinization of modified PDI confirmed that the Cys residues present in the active site a' of PDI were key targets accounting for nitroalkene modification. GENERAL SIGNIFICANCE: PDI may contribute to NOX2 activation. As such, inhibition of PDI by NO2AA might be involved in preventing NOX2 activation. Future work will be directed to determine if the covalent modifications observed play a role in the reported NO2AA inhibition of NOX2 activity.


Assuntos
Ácido Araquidônico/farmacologia , Cisteína/metabolismo , Isomerases de Dissulfetos de Proteínas/antagonistas & inibidores , Anti-Inflamatórios/farmacologia , Domínio Catalítico , Humanos , Glicoproteínas de Membrana/metabolismo , NADPH Oxidase 2 , NADPH Oxidases/metabolismo , Óxido Nítrico/metabolismo , Ligação Proteica , Tripsina/metabolismo
16.
Biochim Biophys Acta ; 1852(7): 1334-46, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25766108

RESUMO

Quiescin sulfhydryl oxidase 1 (QSOX1) is a flavoenzyme largely present in the extracellular milieu whose physiological functions and substrates are not known. QSOX1 has been implicated in the regulation of tumor cell survival, proliferation and migration, in addition to extracellular matrix (ECM) remodeling. However, data regarding other pathophysiological conditions are still lacking. Arterial injury by balloon catheter is an established model of post-angioplasty restenosis. This technique induces neointima formation due to migration and proliferation of vascular smooth muscle cells (VSMC), followed by ECM synthesis and remodeling. Here, we show that QSOX1 knockdown inhibited VSMC migration and proliferation in vitro. In contrast, QSOX1 overexpression stimulated these processes. While migration could be induced by the incubation of cells with the active recombinant QSOX1, proliferation was induced by addition of the active and also of an inactive mutant QSOX1 protein. The proliferation induced by both recombinants was independent of intracellular hydrogen peroxide and dependent of the MEK/ERK pathway. To recapitulate in vivo VSMC pathophysiology, balloon-induced arterial injury was performed. The expression of QSOX1 in the neointimal layer of balloon-injured rat carotids was high and peaked at 14 days post-injury. In vivo QSOX1 knockdown led to a significant decrease in PCNA expression at day 14 post-injury and a decreased intima/media area ratio at day 21 post-injury, compared with scrambled siRNA transfection. In summary, our findings demonstrate that QSOX1 induces VSMC migration and proliferation in vitro and contributes to neointima thickening in balloon-injured rat carotids.


Assuntos
Movimento Celular , Proliferação de Células , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Neointima/metabolismo , Tiorredoxinas/metabolismo , Animais , Artérias Carótidas/patologia , Artérias Carótidas/cirurgia , Células Cultivadas , Peróxido de Hidrogênio/metabolismo , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos , Músculo Liso Vascular/citologia , Músculo Liso Vascular/fisiologia , Miócitos de Músculo Liso/fisiologia , Ratos , Ratos Wistar , Tiorredoxinas/genética
17.
Cell Physiol Biochem ; 39(1): 371-84, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27351177

RESUMO

BACKGROUND/AIMS: Although increased oxidative stress plays a role in heart failure (HF)-induced skeletal myopathy, signaling pathways involved in muscle changes and the role of antioxidant agents have been poorly addressed. We evaluated the effects of N-acetylcysteine (NAC) on intracellular signaling pathways potentially modulated by oxidative stress in soleus muscle from HF rats. METHODS AND RESULTS: Four months after surgery, rats were assigned to Sham, myocardial infarction (MI)-C (without treatment), and MI-NAC (treated with N-acetylcysteine) groups. Two months later, echocardiogram showed left ventricular dysfunction in MI-C; NAC attenuated diastolic dysfunction. Oxidative stress was evaluated in serum and soleus muscle; malondialdehyde was higher in MI-C than Sham and did not differ between MI-C and MI-NAC. Oxidized glutathione concentration in soleus muscle was similar in Sham and MI-C, and lower in MI-NAC than MI-C (Sham 0.168 ± 0.056; MI-C 0.223 ± 0.073; MI-NAC 0.136 ± 0.023 nmol/mg tissue; p = 0.014). Western blot showed increased p-JNK and decreased p38, ERK1/2, and p-ERK1/2 in infarcted rats. NAC restored ERK1/2. NF-954;B p65 subunit was reduced; p-Ser276 in p65 and I954;B was increased; and p-Ser536 unchanged in MI-C compared to Sham. NAC did not modify NF-954;B p65 subunit, but decreased p-Ser276 and p-Ser536. CONCLUSION: N-acetylcysteine modulates MAPK and NF-954;B signaling pathways in soleus muscle of HF rats.


Assuntos
Acetilcisteína/farmacologia , Insuficiência Cardíaca/tratamento farmacológico , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Músculo Esquelético/efeitos dos fármacos , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Antioxidantes/farmacologia , Western Blotting , Ecocardiografia , Expressão Gênica/efeitos dos fármacos , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Masculino , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Músculo Esquelético/metabolismo , Proteína MyoD/genética , Proteína MyoD/metabolismo , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/genética , Infarto do Miocárdio/metabolismo , Miogenina/genética , Miogenina/metabolismo , Ratos Wistar , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Disfunção Ventricular Esquerda/tratamento farmacológico , Disfunção Ventricular Esquerda/genética , Disfunção Ventricular Esquerda/fisiopatologia
18.
Metab Brain Dis ; 31(4): 917-27, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27154727

RESUMO

Early-life environmental insults have been shown to promote long-term development of chronic non-communicable diseases, including metabolic disturbances and mental illnesses. As such, premature consumption of high-sugar foods has been associated to early onset of detrimental outcomes, whereas underlying mechanisms are still poorly understood. In the present study, we sought to investigate whether early and sustained exposure to high-sucrose diet promotes metabolic disturbances that ultimately might anticipate neurological injuries. At postnatal day 21, weaned male rats started to be fed a standard chow (10 % sucrose, CTR) or a high-sucrose diet (25 % sucrose, HSD) for 9 weeks prior to euthanasia at postnatal day 90. HSD did not alter weight gain and feed efficiency between groups, but increased visceral, non-visceral and brown adipose tissue accumulation. HSD rats demonstrated elevated blood glucose levels in both fasting and fed states, which were associated to impaired glucose tolerance. Peripheral insulin sensitivity did not change, whereas hepatic insulin resistance was supported by increased serum triglyceride levels, as well as higher TyG index values. Assessment of hippocampal gene expression showed endoplasmic reticulum (ER) stress pathways were activated in HSD rats, as compared to CTR. HSD rats had overexpression of unfolded protein response sensors, PERK and ATF6; ER chaperone, PDIA2 and apoptosis-related genes, CHOP and Caspase 3; but decreased expression of chaperone GRP78. Finally, HSD rats demonstrated impaired neuromuscular function and anxious behavior, but preserved cognitive parameters. In conclusion, our data indicate that early exposure to HSD promote metabolic disturbances, which disrupt hippocampus homeostasis and might precociously affect its neurobehavioral functions.


Assuntos
Comportamento Animal/efeitos dos fármacos , Sacarose Alimentar/administração & dosagem , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Síndrome Metabólica/metabolismo , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Animais , Ansiedade/metabolismo , Glucose/metabolismo , Hipocampo/metabolismo , Resistência à Insulina/fisiologia , Masculino , Ratos , Ratos Wistar , Triglicerídeos/metabolismo
19.
Cell Physiol Biochem ; 35(1): 148-59, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25591758

RESUMO

BACKGROUND: Chronic heart failure is characterized by decreased exercise capacity with early exacerbation of fatigue and dyspnea. Intrinsic skeletal muscle abnormalities can play a role in exercise intolerance. Causal or contributing factors responsible for muscle alterations have not been completely defined. This study evaluated skeletal muscle oxidative stress and NADPH oxidase activity in rats with myocardial infarction (MI) induced heart failure. METHODS AND RESULTS: Four months after MI, rats were assigned to Sham, MI-C (without treatment), and MI-NAC (treated with N-acetylcysteine) groups. Two months later, echocardiogram showed left ventricular dysfunction in MI-C; NAC attenuated diastolic dysfunction. In soleus muscle, glutathione peroxidase and superoxide dismutase activity was decreased in MI-C and unchanged by NAC. 3-nitrotyrosine was similar in MI-C and Sham, and lower in MI-NAC than MI-C. Total reactive oxygen species (ROS) production was assessed by HPLC analysis of dihydroethidium (DHE) oxidation fluorescent products. The 2-hydroxyethidium (EOH)/DHE ratio did not differ between Sham and MI-C and was higher in MI-NAC. The ethidium/DHE ratio was higher in MI-C than Sham and unchanged by NAC. NADPH oxidase activity was similar in Sham and MI-C and lower in MI-NAC. Gene expression of p47(phox) was lower in MI-C than Sham. NAC decreased NOX4 and p22(phox) expression. CONCLUSIONS: We corroborate the case that oxidative stress is increased in skeletal muscle of heart failure rats and show for the first time that oxidative stress is not related to increased NADPH oxidase activity.


Assuntos
Acetilcisteína/farmacologia , Sequestradores de Radicais Livres/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Animais , Etídio/análogos & derivados , Etídio/análise , Glutationa Peroxidase/metabolismo , Insuficiência Cardíaca/epidemiologia , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Ventrículos do Coração/fisiopatologia , Masculino , Malondialdeído/sangue , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Infarto do Miocárdio/etiologia , Infarto do Miocárdio/metabolismo , NADPH Oxidase 4 , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo , Tirosina/análogos & derivados , Tirosina/análise
20.
Clin Sci (Lond) ; 129(1): 39-48, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25700020

RESUMO

The mechanisms whereby testosterone increases cardiovascular risk are not clarified. However, oxidative stress and inflammation seem to be determinants. Herein, we sought to determine whether exogenous testosterone, at physiological levels, induces leucocyte migration, a central feature in immune and inflammatory responses and the mediating mechanisms. We hypothesized that testosterone induces leucocyte migration via NADPH oxidase (NADPHox)-driven reactive oxygen species (ROS) and cyclooxygenase (COX)-dependent mechanisms. Sixteen-week-old Wistar rats received an intraperitoneal injection (5 ml) of either testosterone (10(-7) mol/l) or saline. Rats were pre-treated with 5 ml of sodium salicylate (SS, non-selective COX inhibitor, 1.25 × 10(-3) mol/l, 1 h prior to testosterone or saline), flutamide (androgen receptor antagonist, 10(-5) mol/l), apocynin (NADPHox inhibitor, 3 × 10(-4) mol/l), N-[2-Cyclohexyloxy-4-nitrophenyl]methanesulfonamide (NS398, COX2 inhibitor, 10(-4) mol/l) or saline, 4 h before testosterone or saline administration. Leucocyte migration was assessed 24 h after testosterone administration by intravital microscopy of the mesenteric bed. Serum levels of testosterone were measured by radioimmunoassay. NADPHox activity was assessed in membrane fractions of the mesenteric bed by dihydroethidium (DHE) fluorescence and in isolated vascular smooth muscle cells (VSMC) by HPLC. NADPHox subunits and VCAM (vascular cell adhesion molecule) expression were determined by immunoblotting. Testosterone administration did not change serum levels of endogenous testosterone, but increased venular leucocyte migration to the adventia, NADPHox activity and expression (P < 0.05). These effects were blocked by flutamide. SS inhibited testosterone-induced leucocyte migration (P<0.05). Apocynin and NS398 abolished testosterone-induced leucocyte migration and NADPHox activity (P<0.05). Testosterone induces leucocyte migration via NADPHox- and COX2-dependent mechanisms and may contribute to inflammatory processes and oxidative stress in the vasculature potentially increasing cardiovascular risk.


Assuntos
Movimento Celular/efeitos dos fármacos , Ciclo-Oxigenase 2/metabolismo , Leucócitos/efeitos dos fármacos , NADPH Oxidases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Testosterona/farmacologia , Acetofenonas/farmacologia , Androgênios/farmacologia , Animais , Western Blotting , Células Cultivadas , Inibidores Enzimáticos/farmacologia , Injeções Intraperitoneais , Leucócitos/citologia , Leucócitos/metabolismo , Masculino , Veias Mesentéricas/citologia , Veias Mesentéricas/efeitos dos fármacos , Veias Mesentéricas/metabolismo , Microscopia de Vídeo/métodos , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , NADPH Oxidases/antagonistas & inibidores , Nitrobenzenos/farmacologia , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Sulfonamidas/farmacologia , Superóxidos/metabolismo , Testosterona/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA