RESUMO
DNA-protein crosslinks (DPC) are common DNA lesions induced by various external and endogenous agents. One of the sources of DPC is the apurinic/apyrimidinic site (AP site) and proteins interacting with it. Some proteins possessing AP lyase activity form covalent complexes with AP site-containing DNA without borohydride reduction (suicidal crosslinks). We have shown earlier that tyrosyl-DNA phosphodiesterase 1 (TDP1) but not AP endonuclease 1 (APE1) is able to remove intact OGG1 from protein-DNA adducts, whereas APE1 is able to prevent the formation of DPC by hydrolyzing the AP site. Here we demonstrate that TDP1 can remove intact PARP2 but not XRCC1 from covalent enzyme-DNA adducts with AP-DNA formed in the absence of APE1. We also analyzed an impact of APE1 and TDP1 on the efficiency of DPC formation in APE1-/- or TDP1-/- cell extracts. Our data revealed that APE1 depletion leads to increased levels of PARP1-DNA crosslinks, whereas TDP1 deficiency has little effect on DPC formation.
Assuntos
DNA Liase (Sítios Apurínicos ou Apirimidínicos) , Diester Fosfórico Hidrolases , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , Diester Fosfórico Hidrolases/metabolismo , Diester Fosfórico Hidrolases/genética , Humanos , DNA/metabolismo , DNA/genética , Animais , Proteína 1 Complementadora Cruzada de Reparo de Raio-X/metabolismo , Proteína 1 Complementadora Cruzada de Reparo de Raio-X/genética , Extratos Celulares/química , Reparo do DNA , Camundongos , Adutos de DNA/metabolismo , Adutos de DNA/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Dano ao DNA , Poli(ADP-Ribose) Polimerases/metabolismo , Poli(ADP-Ribose) Polimerases/genéticaRESUMO
Damages of various origin accumulated in the genomic DNA can lead to the breach of genome stability, and are considered to be one of the main factors involved in cellular senescence. DNA repair systems in mammalian cells ensure effective damage removal and repair of the genome structure, therefore, activity of these systems is expected to be correlated with high maximum lifespan observed in the long-lived mammals. This review discusses current results of the studies focused on determination of the DNA repair system activity and investigation of the properties of its key regulatory proteins in the cells of long-lived rodents and bats. Based on the works discussed in the review, it could be concluded that the long-lived rodents and bats in general demonstrate high efficiency in functioning and regulation of DNA repair systems. Nevertheless, a number of questions around the study of DNA repair in the cells of long-lived rodents and bats remain poorly understood, answers to which could open up new avenues for further research.
Assuntos
Quirópteros , Reparo do DNA , Roedores , Animais , Quirópteros/genética , Quirópteros/metabolismo , Roedores/genética , Roedores/metabolismo , Dano ao DNA , LongevidadeRESUMO
Chromatin is an epigenetic platform for implementation of DNA-dependent processes. Nucleosome, as a basic level of chromatin compaction, largely determines its properties and structure. In the study of nucleosomes structure and functions physicochemical tools are actively used, such as magnetic and optical "tweezers", "DNA curtains", nuclear magnetic resonance, X-ray crystallography, and cryogenic electron microscopy, as well as optical methods based on Förster resonance energy transfer. Despite the fact that these approaches make it possible to determine a wide range of structural and functional characteristics of chromatin and nucleosomes with high spatial and time resolution, atomic force microscopy (AFM) complements the capabilities of these methods. The results of structural studies of nucleosome focusing on the AFM method development are presented in this review. The possibilities of AFM are considered in the context of application of other physicochemical approaches.
Assuntos
Microscopia de Força Atômica , Nucleossomos , Nucleossomos/química , Nucleossomos/ultraestrutura , Nucleossomos/metabolismo , Microscopia de Força Atômica/métodos , Humanos , DNA/química , DNA/metabolismo , AnimaisRESUMO
Proteins of nucleotide excision repair system (NER) are responsible for detecting and removing a wide range of bulky DNA damages, thereby contributing significantly to the genome stability maintenance within mammalian cells. Evaluation of NER functional status in the cells is important for identifying pathological changes in the body and assessing effectiveness of chemotherapy. The following method, described herein, has been developed for better assessment of bulky DNA damages removal in vitro, based on qPCR. Using the developed method, NER activity was compared for the extracts of the cells from two mammals with different lifespans: a long-lived naked mole-rat (Heterocephalus glaber) and a short-lived mouse (Mus musculus). Proteins of the H. glaber cell extract have been shown to be 1.5 times more effective at removing bulky damage from the model DNA substrate than the proteins of the M. musculus cell extract. These results are consistent with the experimental data previously obtained. The presented method could be applied not only in fundamental studies of DNA repair in mammalian cells, but also in clinical practice.
Assuntos
Dano ao DNA , Reparo do DNA , Animais , Camundongos , Ratos-Toupeira/genética , Reação em Cadeia da PolimeraseRESUMO
Condensates are biomolecular assemblies that concentrate biomolecules without the help of membranes. They are morphologically highly versatile and may emerge via distinct mechanisms. Nucleic acids-DNA, RNA and poly(ADP-ribose) (PAR) play special roles in the process of condensate organization. These polymeric scaffolds provide multiple specific and nonspecific interactions during nucleation and 'development' of macromolecular assemblages. In this review, we focus on condensates formed with PAR. We discuss to what extent the literature supports the phase separation origin of these structures. Special attention is paid to similarities and differences between PAR and RNA in the process of dynamic restructuring of condensates during their functioning.
Assuntos
Ácidos Nucleicos , Poli Adenosina Difosfato Ribose , RNA/genética , RNA/química , Condensados Biomoleculares , Substâncias MacromolecularesRESUMO
Non-membrane compartments or biomolecular condensates play an important role in the regulation of cellular processes including DNA repair. Here, an ability of XRCC1, a scaffold protein involved in DNA base excision repair (BER) and single-strand break repair, to form protein-rich microphases in the presence of DNA duplexes was discovered. We also showed that the gap-filling activity of BER-related DNA polymerase λ (Pol λ) is significantly increased by the presence of XRCC1. The stimulation of the Pol λ activity was observed only at micromolar XRCC1 concentrations, which were well above the nanomolar dissociation constant determined for the XRCC1-Pol λ complex and pointed to the presence of an auxiliary stimulatory factor in addition to protein-protein interactions. Indeed, according to dynamic light scattering measurements, the stimulation of the Pol λ activity by XRCC1 was coupled with microphase separation in a protein-DNA mixture. Fluorescence microscopy revealed colocalization of Pol λ, XRCC1, and gapped DNA within the microphases. Thus, stimulation of Pol λ activity is caused both by its interaction with XRCC1 and by specific conditions of microphase separation; this phenomenon is shown for the first time.
Assuntos
DNA Polimerase beta , Reparo do DNA , Proteína 1 Complementadora Cruzada de Reparo de Raio-X , Proteína 1 Complementadora Cruzada de Reparo de Raio-X/metabolismo , Proteína 1 Complementadora Cruzada de Reparo de Raio-X/genética , DNA Polimerase beta/metabolismo , Humanos , DNA/metabolismo , Ligação ProteicaRESUMO
Tyrosyl-DNA phosphodiesterase 1 (Tdp1) is an important DNA repair enzyme and one of the causes of tumor resistance to topoisomerase 1 inhibitors such as topotecan. Inhibitors of this Tdp1 in combination with topotecan may improve the effectiveness of therapy. In this work, we synthesized usnic acid derivatives, which are hybrids of its known derivatives: tumor sensitizers to topotecan. New compounds inhibit Tdp1 in the micromolar and submicromolar concentration range; some of them enhance the effect of topotecan on the metabolic activity of cells of various lines according to the MTT test. One of the new compounds (compound 7) not only sensitizes Krebs-2 and Lewis carcinomas of mice to the action of topotecan, but also normalizes the state of the peripheral blood of mice, which is disturbed in the presence of a tumor. Thus, the synthesized substances may be the prototype of a new class of additional therapy for cancer.
Assuntos
Benzofuranos , Carcinoma , Topotecan , Animais , Camundongos , Topotecan/farmacologia , Topotecan/uso terapêutico , Inibidores de Fosfodiesterase/farmacologia , Diester Fosfórico Hidrolases/metabolismo , EsterasesRESUMO
Deoxycholic acid derivatives containing various heterocyclic functional groups at C-3 on the steroid scaffold were designed and synthesized as promising dual tyrosyl-DNA phosphodiesterase 1 and 2 (TDP1 and TDP2) inhibitors, which are potential targets to potentiate topoisomerase poison antitumor therapy. The methyl esters of DCA derivatives with benzothiazole or benzimidazole moieties at C-3 demonstrated promising inhibitory activity in vitro against TDP1 with IC50 values in the submicromolar range. Furthermore, methyl esters 4d-e, as well as their acid counterparts 3d-e, inhibited the phosphodiesterase activity of both TDP1 and TDP2. The combinations of compounds 3d-e and 4d-e with low-toxic concentrations of antitumor drugs topotecan and etoposide showed significantly greater cytotoxicity than the compounds alone. The docking of the derivatives into the binding sites of TDP1 and TDP2 predicted plausible binding modes of the DCA derivatives.
Assuntos
Inibidores de Fosfodiesterase , Diester Fosfórico Hidrolases , Inibidores de Fosfodiesterase/química , Diester Fosfórico Hidrolases/metabolismo , Modelos Moleculares , Ácido Desoxicólico/farmacologia , Relação Estrutura-AtividadeRESUMO
Nucleotide excision repair (NER) is responsible for removing a wide variety of bulky adducts from DNA, thus contributing to the maintenance of genome stability. The efficiency with which proteins of the NER system recognize and remove bulky adducts depends on many factors and is of great clinical and diagnostic significance. The review examines current concepts of the NER system molecular basis in eukaryotic cells and analyzes methods for the assessment of the NER-mediated DNA repair efficiency both in vitro and ex vivo.
Assuntos
Dano ao DNA , Reparo por Excisão , Reparo do DNA , DNA/metabolismo , NucleotídeosRESUMO
The DNA repair system plays a crucial role in maintaining the integrity of the genome [...].
Assuntos
Enzimas Reparadoras do DNA , Reparo do DNA , Enzimas Reparadoras do DNA/metabolismo , Genoma , Preparações Farmacêuticas , Dano ao DNARESUMO
The spectrum of neurodegenerative diseases known today is quite extensive. The complexities of their research and treatment lie not only in their diversity. Even many years of struggle and narrowly focused research on common pathologies such as Alzheimer's, Parkinson's, and other brain diseases have not brought cures for these illnesses. What can be said about orphan diseases? In particular, Huntington's disease (HD), despite affecting a smaller part of the human population, still attracts many researchers. This disorder is known to result from a mutation in the HTT gene, but having this information still does not simplify the task of drug development and studying the mechanisms of disease progression. Nonetheless, the data accumulated over the years and their analysis provide a good basis for further research. Here, we review studies devoted to understanding the mechanisms of HD. We analyze genes and molecular pathways involved in HD pathogenesis to describe the action of repurposed drugs and try to find new therapeutic targets.
Assuntos
Doença de Huntington , Doenças Neurodegenerativas , Humanos , Reposicionamento de Medicamentos , Doença de Huntington/tratamento farmacológico , Doença de Huntington/genética , Doença de Huntington/metabolismo , Desenvolvimento de Medicamentos , Proteína Huntingtina/genética , MutaçãoRESUMO
Tyrosyl-DNA phosphodiesterase 1 (TDP1) is an important repair enzyme that removes various covalent adducts from the 3' end of DNA. Particularly, covalent complexes of topoisomerase 1 (TOP1) with DNA stabilized by DNA damage or by various chemical agents are an examples of such adducts. Anticancer drugs such as the TOP1 poisons topotecan and irinotecan are responsible for the stabilization of these complexes. TDP1 neutralizes the effect of these anticancer drugs, eliminating the DNA adducts. Therefore, the inhibition of TDP1 can sensitize tumor cells to the action of TOP1 poisons. This review contains information about methods for determining the TDP1 activity, as well as describing the inhibitors of these enzyme derivatives of natural biologically active substances, such as aminoglycosides, nucleosides, polyphenolic compounds, and terpenoids. Data on the efficiency of combined inhibition of TOP1 and TDP1 in vitro and in vivo are presented.
Assuntos
Antineoplásicos , Produtos Biológicos , Produtos Biológicos/farmacologia , Diester Fosfórico Hidrolases/metabolismo , Enzimas Reparadoras do DNA/genética , Antineoplásicos/farmacologia , Antineoplásicos/química , DNA Topoisomerases Tipo I/metabolismo , Reparo do DNA , DNARESUMO
Tyrosyl-DNA-phosphodiesterase 1 (TDP1) is a promising target for antitumor therapy; the use of TDP1 inhibitors with a topoisomerase 1 poison such as topotecan is a potential combination therapy. In this work, a novel series of 3,5-disubstituted thiazolidine-2,4-diones was synthesized and tested against TDP1. The screening revealed some active compounds with IC50 values less than 5 µM. Interestingly, compounds 20d and 21d were the most active, with IC50 values in the submicromolar concentration range. None of the compounds showed cytotoxicity against HCT-116 (colon carcinoma) and MRC-5 (human lung fibroblasts) cell lines in the 1-100 µM concentration range. Finally, this class of compounds did not sensitize cancer cells to the cytotoxic effect of topotecan.
Assuntos
Inibidores de Fosfodiesterase , Diester Fosfórico Hidrolases , Tiazolidinedionas , Humanos , Modelos Moleculares , Monoterpenos/farmacologia , Inibidores de Fosfodiesterase/farmacologia , Diester Fosfórico Hidrolases/metabolismo , Topotecan/farmacologia , Tiazolidinedionas/farmacologiaRESUMO
Topoisomerase 1 (TOP1) is an enzyme that regulates DNA topology and is essential for replication, recombination, and other processes. The normal TOP1 catalytic cycle involves the formation of a short-lived covalent complex with the 3' end of DNA (TOP1 cleavage complex, TOP1cc), which can be stabilized, resulting in cell death. This fact substantiates the effectiveness of anticancer drugs-TOP1 poisons, such as topotecan, that block the relegation of DNA and fix TOP1cc. Tyrosyl-DNA phosphodiesterase 1 (TDP1) is able to eliminate TOP1cc. Thus, TDP1 interferes with the action of topotecan. Poly(ADP-ribose) polymerase 1 (PARP1) is a key regulator of many processes in the cell, such as maintaining the integrity of the genome, regulation of the cell cycle, cell death, and others. PARP1 also controls the repair of TOP1cc. We performed a transcriptomic analysis of wild type and PARP1 knockout HEK293A cells treated with topotecan and TDP1 inhibitor OL9-119 alone and in combination. The largest number of differentially expressed genes (DEGs, about 4000 both up- and down-regulated genes) was found in knockout cells. Topotecan and OL9-119 treatment elicited significantly fewer DEGs in WT cells and negligible DEGs in PARP1-KO cells. A significant part of the changes caused by PARP1-KO affected the synthesis and processing of proteins. Differences under the action of treatment with TOP1 or TDP1 inhibitors alone were found in the signaling pathways for the development of cancer, DNA repair, and the proteasome. The drug combination resulted in DEGs in the ribosome, proteasome, spliceosome, and oxidative phosphorylation pathways.
Assuntos
Diester Fosfórico Hidrolases , Topotecan , Sistemas CRISPR-Cas , DNA , Reparo do DNA , DNA Topoisomerases Tipo I/genética , DNA Topoisomerases Tipo I/metabolismo , Esterases/metabolismo , Diester Fosfórico Hidrolases/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Topotecan/farmacologia , Transcriptoma , Poli(ADP-Ribose) Polimerase-1/metabolismoRESUMO
Tyrosyl-DNA-phosphodiesterase 1 (TDP1) is an important enzyme in the DNA repair system. The ability of the enzyme to repair DNA damage induced by a topoisomerase 1 poison such as the anticancer drug topotecan makes TDP1 a promising target for complex antitumor therapy. In this work, a set of new 5-hydroxycoumarin derivatives containing monoterpene moieties was synthesized. It was shown that most of the conjugates synthesized demonstrated high inhibitory properties against TDP1 with an IC50 in low micromolar or nanomolar ranges. Geraniol derivative 33a was the most potent inhibitor with IC50 130 nM. Docking the ligands to TDP1 predicted a good fit with the catalytic pocket blocking access to it. The conjugates used in non-toxic concentration increased cytotoxicity of topotecan against HeLa cancer cell line but not against conditionally normal HEK 293A cells. Thus, a new structural series of TDP1 inhibitors, which are able to sensitize cancer cells to the topotecan cytotoxic effect has been discovered.
Assuntos
Antineoplásicos , Topotecan , Humanos , Topotecan/farmacologia , Inibidores de Fosfodiesterase/farmacologia , Inibidores de Fosfodiesterase/química , Relação Estrutura-Atividade , Diester Fosfórico Hidrolases/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química , Linhagem Celular TumoralRESUMO
Tyrosyl-DNA phosphodiesterase 1(TDP1) is a promising target for a new therapy in oncological disease as an adjunct to topoisomerase 1 (TOP1) drugs. In this paper, novel thiazolidin-4-one derivatives with a benzyl and monoterpene substituents were synthesized. Compounds with a monoterpene fragment attached via a phenyloxy linker were active against TDP1 with IC50 values in the 1 ÷ 3 µM range, while direct attachment of monoterpene moiety to the thiazolidin-4-one fragment had no activity. Molecular modelling predicted two plausible binding modes of the active compounds both effectively blocking access to the catalytic site of TDP. At non-toxic concentrations the active ligands potentiated the efficacy of the TOP1 poison topotecan in human cervical cancer HeLa cells, but not in non-cancerous HEK293A cells.
Assuntos
Inibidores de Fosfodiesterase , Diester Fosfórico Hidrolases , Esterases/metabolismo , Células HeLa , Humanos , Monoterpenos/farmacologia , Inibidores de Fosfodiesterase/farmacologia , Diester Fosfórico Hidrolases/metabolismo , Relação Estrutura-AtividadeRESUMO
Poly(ADP-ribosyl)ation is a post-translational modification of proteins that performs an essential regulatory function in the cellular response to DNA damage. The key enzyme synthesizing poly(ADP-ribose) (PAR) in the cells is poly(ADP-ribose) polymerase 1 (PARP1). Understanding the mechanisms of the PARP1 activity regulation within the cells is necessary for development of the PARP1-targeted antitumor therapy. This review is devoted to the studies of the role of the RNA-binding protein YB-1 in the PARP1-catalyzed PARylation. The mechanisms of PARP1 activity stimulation by YB-1 protein can possibly be extended to other RNA-binding proteins involved in the maintenance of the genome stability.
Assuntos
Poli ADP Ribosilação , Poli(ADP-Ribose) Polimerases , Catálise , Dano ao DNA , Poli Adenosina Difosfato Ribose , Poli(ADP-Ribose) Polimerases/metabolismo , Proteínas/metabolismoRESUMO
Reaction of (ADP-ribosyl)ation catalyzed by DNA-dependent proteins of the poly(ADP-ribose)polymerase (PARP) family, PARP1, PARP2, and PARP3, comprises the cellular response to DNA damage. These proteins are involved in the base excision repair (BER) process. Despite the extensive research, it remains unknown how PARPs are involved in the regulation of the BER process and how the roles are distributed between the DNA-dependent members of the PARP family. Here, we investigated the interaction of the PARP's family DNA-dependent proteins with nucleosome core particles containing DNA intermediates of the initial stages of BER. To do that, the nucleosomes containing damage in the vicinity of one of the DNA duplex blunt ends were reconstituted based on the Widom's Clone 603 DNA sequence. Dissociation constants of the PARP complexes with nucleosomes bearing DNA contained uracil (Native), apurine/apyrimidine site (AP site), or a single-nucleotide gap with 5'-dRp fragment (Gap) were determined. It was shown that the affinity of the proteins for the nucleosomes increased in the row: PARP3<Assuntos
Nucleossomos
, Inibidores de Poli(ADP-Ribose) Polimerases
, DNA/metabolismo
, Dano ao DNA
, Reparo do DNA
RESUMO
Previously, we have found that a nucleic acid metabolite, 7-methylguanine (7mGua), produced in the body can have an inhibitory effect on the poly(ADP-ribose) polymerase 1 (PARP1) enzyme, an important pharmacological target in anticancer therapy. In this work, using an original method of analysis of PARP1 activity based on monitoring fluorescence anisotropy, we studied inhibitory properties of 7mGua and its metabolite, 8-hydroxy-7-methylguanine (8h7mGua). Both compounds inhibited PARP1 enzymatic activity in a dose-dependent manner, however, 8h7mGua was shown to be a stronger inhibitor. The IC50 values for 8h7mGua at different concentrations of the NAD+ substrate were found to be 4 times lower, on average, than those for 7mGua. The more efficient binding of 8h7mGua in the PARP1 active site is explained by the presence of an additional hydrogen bond with the Glu988 catalytic residue. Experimental and computational studies did not reveal the effect of 7mGua and 8h7mGua on the activity of other DNA repair enzymes, indicating selectivity of their inhibitory action.
Assuntos
NAD , Ácidos Nucleicos , Guanina/análogos & derivados , HumanosRESUMO
Biomolecular condensates are nonmembrane cellular compartments whose formation in many cases involves phase separation (PS). Despite much research interest in this mechanism of macromolecular self-organization, the concept of PS as applied to a live cell faces certain challenges. In this review, we discuss a basic model of PS and the role of site-specific interactions and percolation in cellular PS-related events. Using a multivalent poly(ADP-ribose) molecule as an example, which has high PS-driving potential due to its structural features, we consider how site-specific interactions and network formation are involved in the formation of phase-separated cellular condensates.