Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Malar J ; 20(1): 295, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34193175

RESUMO

BACKGROUND: Plasmodium species are entirely dependent upon their host as a source of essential iron. Although it is an indispensable micronutrient, oxidation of excess ferrous iron to the ferric state in the cell cytoplasm can produce reactive oxygen species that are cytotoxic. The malaria parasite must therefore carefully regulate the processes involved in iron acquisition and storage. A 273 amino acid membrane transporter that is a member of the vacuolar iron transporter (VIT) family and an orthologue of the yeast Ca2+-sensitive cross complementer (CCC1) protein plays a major role in cytosolic iron detoxification of Plasmodium species and functions in transport of ferrous iron ions into the endoplasmic reticulum for storage. While this transporter, termed PfVIT, is not critical for viability of the parasite evidence from studies of mice infected with VIT-deficient Plasmodium suggests it could still provide an efficient target for chemoprophylactic treatment of malaria. Individual amino acid residues that constitute the Fe2+ binding site of the protein were identified to better understand the structural basis of substrate recognition and binding by PfVIT. METHODS: Using the crystal structure of a recently published plant VIT as a template, a high-quality homology model of PfVIT was constructed to identify the amino acid composition of the transporter's substrate binding site and to act as a guide for subsequent mutagenesis studies. To test the effect of mutation of the substrate binding-site residues on PfVIT function a yeast complementation assay assessed the ability of overexpressed, recombinant wild type and mutant PfVIT to rescue an iron-sensitive deletion strain (ccc1∆) of Saccharomyces cerevisiae yeast from the toxic effects of a high concentration of extracellular iron. RESULTS: The combined in silico and mutagenesis approach identified a methionine residue located within the cytoplasmic metal binding domain of the transporter as essential for PfVIT function and provided insight into the structural basis for the Fe2+-selectivity of the protein. CONCLUSION: The structural model of the metal binding site of PfVIT opens the door for rational design of therapeutics to interfere with iron homeostasis within the malaria parasite.


Assuntos
Proteínas de Transporte de Cátions/genética , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Sítios de Ligação , Transporte Biológico , Proteínas de Transporte de Cátions/metabolismo , Ferro/metabolismo , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/metabolismo , Alinhamento de Sequência , Análise de Sequência de Proteína
2.
Org Biomol Chem ; 14(4): 1201-5, 2016 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-26565694

RESUMO

Michaelis-Arbuzov reactions of S-aryl disulfide derivatives of 3'-thiothymidine or 5'-thioadenosine with tris(trimethylsilyl) phosphite proceeded in high yields to the corresponding phosphorothiolate monoesters. Subsequent hydrolytic desilylation and phosphate coupling were effected in one-pot using liquid-assisted grinding in a vibration ball mill. Novel 3',5'- and 5',5'-pyrophosphorothiolate-linked dinucleoside cap analogues were thereby prepared.


Assuntos
Nucleotídeos/síntese química , Compostos Organofosforados/síntese química , Compostos de Sulfidrila/síntese química , Estrutura Molecular , Nucleotídeos/química , Compostos Organofosforados/química , Compostos de Sulfidrila/química
3.
Mol Microbiol ; 92(4): 872-84, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24684269

RESUMO

Resistance to high concentrations of bile salts in the human intestinal tract is vital for the survival of enteric bacteria such as Escherichia coli. Although the tripartite AcrAB-TolC efflux system plays a significant role in this resistance, it is purported that other efflux pumps must also be involved. We provide evidence from a comprehensive suite of experiments performed at two different pH values (7.2 and 6.0) that reflect pH conditions that E. coli may encounter in human gut that MdtM, a single-component multidrug resistance transporter of the major facilitator superfamily, functions in bile salt resistance in E. coli by catalysing secondary active transport of bile salts out of the cell cytoplasm. Furthermore, assays performed on a chromosomal ΔacrB mutant transformed with multicopy plasmid encoding MdtM suggested a functional synergism between the single-component MdtM transporter and the tripartite AcrAB-TolC system that results in a multiplicative effect on resistance. Substrate binding experiments performed on purified MdtM demonstrated that the transporter binds to cholate and deoxycholate with micromolar affinity, and transport assays performed on inverted vesicles confirmed the capacity of MdtM to catalyse electrogenic bile salt/H(+) antiport.


Assuntos
Antiporters/metabolismo , Ácidos e Sais Biliares/metabolismo , Ácidos e Sais Biliares/toxicidade , Tolerância a Medicamentos , Proteínas de Escherichia coli/metabolismo , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Lipoproteínas/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo
4.
J Antimicrob Chemother ; 68(4): 831-9, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23221628

RESUMO

OBJECTIVES: Quaternary ammonium compounds (QACs) are used extensively as biocides and their misuse may be contributing to the development of bacterial resistance. Although the major intrinsic resistance to QACs of Gram-negative bacteria is mediated by the action of tripartite multidrug transporters of the resistance-nodulation-division family, we aimed to test if the promiscuity of the recently characterized major facilitator superfamily multidrug transporter, MdtM, from Escherichia coli enabled it also to function in the efflux of QACs. METHODS: The ability of the major facilitator mdtM gene product, when overexpressed from multicopy plasmid, to protect E. coli cells from the toxic effects of a panel of seven QACs was determined using growth inhibition assays in liquid medium. Interaction between QACs and MdtM was studied by a combination of substrate binding assays using purified protein in detergent solution and transport assays using inverted vesicles. RESULTS: E. coli cells that overproduced MdtM were less susceptible to the cytotoxic effects of each of the QACs tested compared with cells that did not overproduce the transporter. Purified MdtM bound each QAC with micromolar affinity and the protein utilized the electrochemical proton gradient to transport QACs across the cytoplasmic membrane. Furthermore, the results suggested a functional interaction between MdtM and the tripartite resistance-nodulation-division family AcrAB-TolC efflux system. CONCLUSIONS: The results support a hitherto unidentified capacity for a single-component multidrug transporter of the major facilitator superfamily, MdtM, to function in the efflux of a broad range of QACs and thus contribute to the intrinsic resistance of E. coli to these compounds.


Assuntos
Antiporters/metabolismo , Desinfetantes/farmacologia , Farmacorresistência Bacteriana , Proteínas de Escherichia coli/metabolismo , Escherichia coli/efeitos dos fármacos , Compostos de Amônio Quaternário/farmacologia , Antiporters/genética , Transporte Biológico , Desinfetantes/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Ligação Proteica , Compostos de Amônio Quaternário/metabolismo
5.
BMC Microbiol ; 13: 113, 2013 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-23701827

RESUMO

BACKGROUND: In neutralophilic bacteria, monovalent metal cation/H+ antiporters play a key role in pH homeostasis. In Escherichia coli, only four antiporters (NhaA, NhaB, MdfA and ChaA) are identified to function in maintenance of a stable cytoplasmic pH under conditions of alkaline stress. We hypothesised that the multidrug resistance protein MdtM, a recently characterised homologue of MdfA and a member of the major facilitator superfamily, also functions in alkaline pH homeostasis. RESULTS: Assays that compared the growth of an E. coli ΔmdtM deletion mutant transformed with a plasmid encoding wild-type MdtM or the dysfunctional MdtM D22A mutant at different external alkaline pH values (ranging from pH 8.5 to 10) revealed a potential contribution by MdtM to alkaline pH tolerance, but only when millimolar concentrations of sodium or potassium was present in the growth medium. Fluorescence-based activity assays using inverted vesicles generated from transformants of antiporter-deficient (ΔnhaA, ΔnhaB, ΔchaA) E. coli TO114 cells defined MdtM as a low-affinity antiporter that catalysed electrogenic exchange of Na+, K+, Rb+ or Li+ for H+. The K+/H+ antiport reaction had a pH optimum at 9.0, whereas the Na+/H+ exchange activity was optimum at pH 9.25. Measurement of internal cellular pH confirmed MdtM as contributing to maintenance of a stable cytoplasmic pH, acid relative to the external pH, under conditions of alkaline stress. CONCLUSIONS: Taken together, the results support a role for MdtM in alkaline pH tolerance. MdtM can therefore be added to the currently limited list of antiporters known to function in pH homeostasis in the model organism E. coli.


Assuntos
Álcalis/metabolismo , Antiporters/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/fisiologia , Homeostase , Antiporters/genética , Cátions/metabolismo , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Deleção de Genes , Teste de Complementação Genética , Concentração de Íons de Hidrogênio , Metais/metabolismo
7.
Viruses ; 13(12)2021 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-34960704

RESUMO

White chick hatchery disease is an emerging disease of broiler chicks with which the virus, chicken astrovirus, has been associated. Adult birds typically show no obvious clinical signs of infection, although some broiler breeder flocks have experienced slight egg drops. Substantial decreases in hatching are experienced over a two-week period, with an increase in mid-to-late embryo deaths, chicks too weak to hatch and pale, runted chicks with high mortality. Chicken astrovirus is an enteric virus, and strains are typically transmitted horizontally within flocks via the faecal-oral route; however, dead-in-shell embryos and weak, pale hatchlings indicate vertical transmission of the strains associated with white chick hatchery disease. Hatch levels are typically restored after two weeks when seroconversion of the hens to chicken astrovirus has occurred. Currently, there are no commercial vaccines available for the virus; therefore, the only means of protection is by good levels of biosecurity. This review aims to outline the current understanding regarding white chick hatchery disease in broiler chick flocks suffering from severe early mortality and increased embryo death in countries worldwide.


Assuntos
Infecções por Astroviridae/veterinária , Avastrovirus , Galinhas , Doenças Transmissíveis Emergentes/veterinária , Doenças das Aves Domésticas , Criação de Animais Domésticos , Animais , Infecções por Astroviridae/fisiopatologia , Infecções por Astroviridae/prevenção & controle , Infecções por Astroviridae/virologia , Avastrovirus/isolamento & purificação , Doenças Transmissíveis Emergentes/fisiopatologia , Doenças Transmissíveis Emergentes/prevenção & controle , Doenças Transmissíveis Emergentes/virologia , Progressão da Doença , Doenças das Aves Domésticas/fisiopatologia , Doenças das Aves Domésticas/prevenção & controle , Doenças das Aves Domésticas/virologia
8.
Biophys J ; 97(5): 1346-53, 2009 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-19720022

RESUMO

Major facilitators represent the largest superfamily of secondary active transporter proteins and catalyze the transport of an enormous variety of small solute molecules across biological membranes. However, individual superfamily members, although they may be architecturally similar, exhibit strict specificity toward the substrates they transport. The structural basis of this specificity is poorly understood. A member of the major facilitator superfamily is the glycerol-3-phosphate (G3P) transporter (GlpT) from the Escherichia coli inner membrane. GlpT is an antiporter that transports G3P into the cell in exchange for inorganic phosphate (P(i)). By combining large-scale molecular-dynamics simulations, mutagenesis, substrate-binding affinity, and transport activity assays on GlpT, we were able to identify key amino acid residues that confer substrate specificity upon this protein. Our studies suggest that only a few amino acid residues that line the transporter lumen act as specificity determinants. Whereas R45, K80, H165, and, to a lesser extent Y38, Y42, and Y76 contribute to recognition of both free P(i) and the phosphate moiety of G3P, the residues N162, Y266, and Y393 function in recognition of only the glycerol moiety of G3P. It is the latter interactions that give the transporter a higher affinity to G3P over P(i).


Assuntos
Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Sequência de Aminoácidos , Simulação por Computador , Escherichia coli , Fosfomicina/metabolismo , Proteínas de Membrana Transportadoras/genética , Modelos Biológicos , Modelos Moleculares , Mutação , Ligação Proteica/genética , Transporte Proteico/genética
9.
Chem Sci ; 10(47): 10948-10957, 2019 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-32190252

RESUMO

Oligodeoxynucleotides incorporating internucleotide phosphoroselenolate linkages have been prepared under solid-phase synthesis conditions using dimer phosphoramidites. These dimers were constructed following the high yielding Michaelis-Arbuzov (M-A) reaction of nucleoside H-phosphonate derivatives with 5'-deoxythymidine-5'-selenocyanate and subsequent phosphitylation. Efficient coupling of the dimer phosphoramidites to solid-supported substrates was observed under both manual and automated conditions and required only minor modifications to the standard DNA synthesis cycle. In a further demonstration of the utility of M-A chemistry, the support-bound selenonucleoside was reacted with an H-phosphonate and then chain extended using phosphoramidite chemistry. Following initial unmasking of methyl-protected phosphoroselenolate diesters, pure oligodeoxynucleotides were isolated using standard deprotection and purification procedures and subsequently characterised by mass spectrometry and circular dichroism. The CD spectra of both modified and native duplexes derived from self-complementary sequences with A-form, B-form or mixed conformational preferences were essentially superimposable. These sequences were also used to study the effect of the modification upon duplex stability which showed context-dependent destabilisation (-0.4 to -3.1 °C per phosphoroselenolate) when introduced at the 5'-termini of A-form or mixed duplexes or at juxtaposed central loci within a B-form duplex (-1.0 °C per modification). As found with other nucleic acids incorporating selenium, expeditious crystallisation of a modified decanucleotide A-form duplex was observed and the structure solved to a resolution of 1.45 Å. The DNA structure adjacent to the modification was not significantly perturbed. The phosphoroselenolate linkage was found to impart resistance to nuclease activity.

10.
Res Microbiol ; 169(7-8): 461-467, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28962921

RESUMO

Multidrug resistance is principally a consequence of the active transport of drugs out of the cell by proteins that are integral membrane transporters. In the following review, we present a synthesis of current understanding of the Escherichia coli multidrug resistance transporter, MdtM, a 410 amino acid residue protein that belongs to the large and ubiquitous major facilitator superfamily (MFS).


Assuntos
Antiporters/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Antiporters/química , Antiporters/genética , Transporte Biológico , Farmacorresistência Bacteriana Múltipla , Escherichia coli/química , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Família Multigênica
11.
Sci Rep ; 7: 42850, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28198449

RESUMO

Vacuolar iron transporters (VITs) are a poorly understood family of integral membrane proteins that can function in iron homeostasis via sequestration of labile Fe2+ into vacuolar compartments. Here we report on the heterologous overexpression and purification of PfVIT, a vacuolar iron transporter homologue from the human malaria-causing parasite Plasmodium falciparum. Use of synthetic, codon-optimised DNA enabled overexpression of functional PfVIT in the inner membrane of Escherichia coli which, in turn, conferred iron tolerance to the bacterial cells. Cells that expressed PfVIT had decreased levels of total cellular iron compared with cells that did not express the protein. Qualitative transport assays performed on inverted vesicles enriched with PfVIT revealed that the transporter catalysed Fe2+/H+ exchange driven by the proton electrochemical gradient. Furthermore, the PfVIT transport function in this system did not require the presence of any Plasmodium-specific factor such as post-translational phosphorylation. PfVIT purified as a monomer and, as measured by intrinsic protein fluorescence quenching, bound Fe2+ in detergent solution with low micromolar affinity. This study of PfVIT provides material for future detailed biochemical, biophysical and structural studies to advance understanding of the vacuolar iron transporter family of membrane proteins from important human pathogens.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Escherichia coli/crescimento & desenvolvimento , Hidrogênio/metabolismo , Ferro/metabolismo , Plasmodium falciparum/metabolismo , Proteínas de Transporte de Cátions/genética , Clonagem Molecular , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Genes Sintéticos , Humanos , Ferro/farmacologia , Malária Falciparum/parasitologia , Viabilidade Microbiana , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Proteínas Recombinantes/metabolismo , Vacúolos/metabolismo
12.
Sci Rep ; 6: 22833, 2016 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-26961153

RESUMO

Multidrug resistance arising from the activity of integral membrane transporter proteins presents a global public health threat. In bacteria such as Escherichia coli, transporter proteins belonging to the major facilitator superfamily make a considerable contribution to multidrug resistance by catalysing efflux of myriad structurally and chemically different antimicrobial compounds. Despite their clinical relevance, questions pertaining to mechanistic details of how these promiscuous proteins function remain outstanding, and the role(s) played by individual amino acid residues in recognition, binding and subsequent transport of different antimicrobial substrates by multidrug efflux members of the major facilitator superfamily requires illumination. Using in silico homology modelling, molecular docking and mutagenesis studies in combination with substrate binding and transport assays, we identified several amino acid residues that play important roles in antimicrobial substrate recognition, binding and transport by Escherichia coli MdtM, a representative multidrug efflux protein of the major facilitator superfamily. Furthermore, our studies suggested that 'aromatic clamps' formed by tyrosine and phenylalanine residues located within the substrate binding pocket of MdtM may be important for antimicrobial substrate recognition and transport by the protein. Such 'clamps' may be a structurally and functionally important feature of all major facilitator multidrug efflux proteins.


Assuntos
Antiporters/metabolismo , Farmacorresistência Bacteriana Múltipla , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Aminoácidos/química , Antibacterianos/química , Antiporters/química , Antiporters/genética , Transporte Biológico , Cloranfenicol/química , Simulação por Computador , Escherichia coli/efeitos dos fármacos , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Simulação de Acoplamento Molecular , Mutagênese Sítio-Dirigida , Mutação , Oniocompostos/química , Compostos Organofosforados/química , Ligação Proteica , Conformação Proteica
13.
Antibiotics (Basel) ; 4(1): 113-35, 2015 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-27025617

RESUMO

Crystallization of integral membrane proteins is a challenging field and much effort has been invested in optimizing the overexpression and purification steps needed to obtain milligram amounts of pure, stable, monodisperse protein sample for crystallography studies. Our current work involves the structural and functional characterization of the Escherichia coli multidrug resistance transporter MdtM, a member of the major facilitator superfamily (MFS). Here we present a protocol for isolation of MdtM to increase yields of recombinant protein to the milligram quantities necessary for pursuit of structural studies using X-ray crystallography. Purification of MdtM was enhanced by introduction of an elongated His-tag, followed by identification and subsequent removal of chaperonin contamination. For crystallization trials of MdtM, detergent screening using size exclusion chromatography determined that decylmaltoside (DM) was the shortest-chain detergent that maintained the protein in a stable, monodispersed state. Crystallization trials of MdtM performed using the hanging-drop diffusion method with commercially available crystallization screens yielded 3D protein crystals under several different conditions. We contend that the purification protocol described here may be employed for production of high-quality protein of other multidrug efflux members of the MFS, a ubiquitous, physiologically and clinically important class of membrane transporters.

14.
FEBS Lett ; 545(2-3): 127-32, 2003 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-12804762

RESUMO

The outer membrane (OM) vitamin B(12) receptor, BtuB, is the primary receptor for E group colicin adsorption to Escherichia coli. Cell death by this family of toxins requires the OM porin OmpF but its role remains elusive. We show that OmpF enhances the ability of purified BtuB to protect bacteria against the endonuclease colicin E9, demonstrating either that the two OM proteins form the functional receptor or that OmpF is recruited for subsequent translocation of the bacteriocin. While stable binary colicin E9-BtuB complexes could be readily shown in vitro, OmpF-containing complexes could not be detected, implying that OmpF association with the BtuB-colicin complex, while necessary, must be weak and/or transient in nature.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Colicinas/toxicidade , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Receptores de Peptídeos/metabolismo , Dicroísmo Circular , Colicinas/farmacocinética , Reagentes de Ligações Cruzadas/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/isolamento & purificação , Proteínas de Membrana Transportadoras , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Receptores de Peptídeos/química , Receptores de Peptídeos/isolamento & purificação , Espectrofotometria Ultravioleta , Vitamina B 12/metabolismo
15.
Photosynth Res ; 75(3): 193-210, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-16228601

RESUMO

The protein components of the reaction center (RC) and core light-harvesting (LH 1) complexes of photosynthetic bacteria have evolved to specifically, but non-covalently, bind bacteriochlorophyll (Bchl). The contribution to binding of specific structural elements in the protein and Bchl may be determined for the LH 1 complex because its subunit can be studied by reconstitution under equilibrium conditions. Important to the determination and utilization of such information is the characterization of the interacting molecular species. To aid in this characterization, a fluorescent probe molecule has been covalently attached to each of the LH 1 polypeptides. The fluorescent probes were selected for optimal absorption and emission properties in order to facilitate their unique excitation and to enable the detection of energy transfer to Bchl. Oregon Green 488 carboxylic acid and 7-diethylaminocoumarin-3-carboxylic acid seemed to fulfill these requirements. Each of these probes were utilized to derivatize the LH1 beta-polypeptide of Rhodobacter sphaeroides. It was demonstrated that the beta-polypeptides did not interact with each other in the absence of Bchl. When Bchl was present, the probe-labeled beta-polypeptides interacted with Bchl to form subunit-type complexes much as those formed with the native polypeptides. Energy transfer from the probe to Bchl occurred with a high efficiency. The alpha-polypeptide from LH 1 of Rb. sphaeroides and that from Rhodospirillum rubrum were also derivatized in the same manner. Since these polypeptides do not oligomerize in the absence of a beta-polypeptide, reversible binding of a single Bchl to a single polypeptide could be measured. Dissociation constants for complex formation were estimated. The relevance of these data to earlier studies of equilibria involving subunit complexes is discussed. Also involved in the photoreceptor complex of Rb. sphaeroides and Rhodobacter capsulatus is another protein referred to as PufX. Two large segments of this protein were chemically synthesized, one reproducing the amino acid sequence of the core segment predicted for Rb. sphaeroides PufX and the other reproducing the amino acid sequence predicted for the core segment of Rb. capsulatus PufX. Each polypeptide was covalently labeled with a fluorescent probe and tested for energy transfer to Bchl. Each was found to bind Bchl with an affinity similar to the affinity of the LH 1 polypeptides for Bchl. It is suggested that PufX binds Bchl and interacts with a Bchlcalpha-polypeptide component of LH 1 to truncate, or interupt, the LH 1 ring adjacent to the location of the Q(B) binding site of the RC.

16.
Photosynth Res ; 81(3): 207-14, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-16034527

RESUMO

This Review summarises the current state of research on the structure and function of light-harvesting apparatus in purple photosynthetic bacteria. Particular emphasis is placed on the major open questions still outstanding in this field in addition to what is already known.

17.
Biochimie ; 94(6): 1334-46, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22426385

RESUMO

Multidrug resistance (MDR) occurs when bacteria simultaneously acquire resistance to a broad spectrum of structurally dissimilar compounds to which they have not previously been exposed. MDR is principally a consequence of the active transport of drugs out of the cell by proteins that are integral membrane transporters. We characterised and purified the putative Escherichia coli MDR transporter, MdtM, a 410 amino acid residue protein that belongs to the large and ubiquitous major facilitator superfamily. Functional characterisation of MdtM using growth inhibition and whole cell transport assays revealed its role in intrinsic resistance of E. coli cells to the antimicrobials ethidium bromide and chloramphenicol. Site-directed mutagenesis studies implied that the MdtM aspartate 22 residue and the highly conserved arginine at position 108 play a role in proton recognition. MdtM was homologously overexpressed and purified to homogeneity in dodecyl-ß-D-maltopyranoside detergent solution and the oligomeric state and stability of the protein in a variety of detergent solutions was investigated using size-exclusion HPLC. Purified MdtM is monomeric and stable in dodecyl-ß-D-maltopyranoside solution and binds chloramphenicol with nanomolar affinity in the same detergent. This work provides a firm foundation for structural studies on this class of multidrug transporter protein.


Assuntos
Antiporters/química , Proteínas de Escherichia coli/química , Proteínas de Membrana Transportadoras/química , Sequência de Aminoácidos , Antiporters/genética , Antiporters/metabolismo , Resistência a Múltiplos Medicamentos , Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Mutagênese Sítio-Dirigida
18.
Mol Biochem Parasitol ; 186(1): 69-72, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22982092

RESUMO

Control of fasciolosis is threatened by the development of anthelmintic resistance. Enhanced triclabendazole (TCBZ) efflux by ABC transporters such as P-glycoprotein (Pgp) has been implicated in this process. A putative full length cDNA coding for a Pgp expressed in adult Fasciola hepatica has been constructed and used to design a primer set capable of amplifying a region encoding part of the second nucleotide binding domain of Pgp when genomic DNA was used as a template. Application of this primer set to genomic DNA from TCBZ-resistant and -susceptible field populations has shown a significant difference in the alleles present. Analysis of an allele occurring at a three-fold higher frequency in the "resistant" population revealed that it was characterised by a serine to arginine substitution at residue 1144. Homology modelling studies have been used to locate this site in the Pgp structure and hence assess its potential to modify functional activity.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Substituição de Aminoácidos , Anti-Helmínticos/farmacologia , Benzimidazóis/farmacologia , Resistência a Medicamentos , Fasciola hepatica/efeitos dos fármacos , Fasciola hepatica/genética , Alelos , Animais , Primers do DNA/genética , Modelos Moleculares , Reação em Cadeia da Polimerase , Conformação Proteica , Triclabendazol
19.
Nat Struct Mol Biol ; 16(6): 652-7, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19430461

RESUMO

Sertraline and fluoxetine are selective serotonin re-uptake inhibitors (SSRIs) that are widely prescribed to treat depression. They exert their effects by inhibiting the presynaptic plasma membrane serotonin transporter (SERT). All SSRIs possess halogen atoms at specific positions, which are key determinants for the drugs' specificity for SERT. For the SERT protein, however, the structural basis of its specificity for SSRIs is poorly understood. Here we report the crystal structures of LeuT, a bacterial SERT homolog, in complex with sertraline, R-fluoxetine or S-fluoxetine. The SSRI halogens all bind to exactly the same pocket within LeuT. Mutation at this halogen-binding pocket (HBP) in SERT markedly reduces the transporter's affinity for SSRIs but not for tricyclic antidepressants. Conversely, when the only nonconserved HBP residue in both norepinephrine and dopamine transporters is mutated into that found in SERT, their affinities for all the three SSRIs increase uniformly. Thus, the specificity of SERT for SSRIs is dependent largely on interaction of the drug halogens with the protein's HBP.


Assuntos
Sistemas de Transporte de Aminoácidos Neutros/química , Fluoxetina/farmacologia , Inibidores Seletivos de Recaptação de Serotonina/química , Proteínas da Membrana Plasmática de Transporte de Serotonina/química , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Sertralina/farmacologia , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Antidepressivos Tricíclicos/farmacologia , Sítios de Ligação , Linhagem Celular , Cristalografia por Raios X/métodos , Dopamina/metabolismo , Avaliação Pré-Clínica de Medicamentos , Humanos , Modelos Químicos , Mutação , Norepinefrina/metabolismo , Ligação Proteica , Inibidores Seletivos de Recaptação de Serotonina/farmacologia
20.
Annu Rev Microbiol ; 62: 289-305, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18537473

RESUMO

The major facilitator superfamily (MFS) represents the largest group of secondary active membrane transporters, and its members transport a diverse range of substrates. Recent work shows that MFS antiporters, and perhaps all members of the MFS, share the same three-dimensional structure, consisting of two domains that surround a substrate translocation pore. The advent of crystal structures of three MFS antiporters sheds light on their fundamental mechanism; they operate via a single binding site, alternating-access mechanism that involves a rocker-switch type movement of the two halves of the protein. In the sn-glycerol-3-phosphate transporter (GlpT) from Escherichia coli, the substrate-binding site is formed by several charged residues and a histidine that can be protonated. Salt-bridge formation and breakage are involved in the conformational changes of the protein during transport. In this review, we attempt to give an account of a set of mechanistic principles that characterize all MFS antiporters.


Assuntos
Antiporters/química , Antiporters/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Proteínas de Escherichia coli , Cinética , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Modelos Moleculares , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA