RESUMO
Purpose: To compare the biomechanical performance of a suture with proposed dynamic self-tensioning properties with that of commonly used high-tensile sutures by evaluating suture loop length changes, responses to cyclic loading, and failure testing with intermittent saline soaks. Methods: Six knots each of 4 different sutures were studied: 3 high-tensile sutures (ORTHOCORD, FiberWire, and ETHIBOND), and a dynamically self-tensioning suture (DYNACORD). After we measured loop length, knots were soaked in 37°C saline for 24 hours. Loop lengths were remeasured and tensile testing was performed. Cyclic elongation, first-cycle excursion, and elongation amplitude were recorded. Knots were then resoaked and retested. Finally, knots were pulled to failure, and peak load and stiffness were measured. Values were compared using nonparametric statistical tests. Results: DYNACORD loop length decreased by 27% after the first soak (P = .002), whereas the other sutures demonstrated no length change (P > .05). Although DYNACORD loop length increased during cyclic load testing (P = .009), it was still significantly reduced after the second saline soak compared with its initial length (P = .002), whereas all other suture loops had elongated. ETHIBOND (P = .004) and ORTHOCORD (P = .002) had significantly less cyclic elongation from cycle I to cycle II testing compared with the other sutures. ETHIBOND had the lowest peak load at failure (P = .002). FiberWire had the greatest stiffness (P = .006). Conclusions: Compared with other suture types, the self-tensioning suture showed dynamic properties, demonstrating a decrease in loop length when soaked in a saline bath. This length was maintained after a second soak despite increased loop length during interval cyclic loading. Clinical Relevance: Knot and loop security are of paramount importance to arthroscopic soft-tissue procedures. The ability for a suture to self-tension has implications for how it may interact with tissues in vivo to increase construct stability after arthroscopic soft tissue repair procedures.
RESUMO
OBJECTIVE: Sex differences in epilepsy appear driven in part due to effects of gonadal steroids, with varying results in experimental models based on species, strain, and method of seizure induction. Furthermore, removing the main source of these steroids via gonadectomy may impact seizure characteristics differently in males and females. Repeated low-dose kainic acid (RLDKA) systemic injection paradigms were recently shown to reliably induce status epilepticus (SE) and hippocampal histopathology in C57BL/6J mice. Here, we investigated whether seizure susceptibility in a RLDKA injection protocol exhibits a sex difference and whether gonadectomy differentially influences response to this seizure induction paradigm in males and females. METHODS: Adult C57BL/6J mice were left gonad-intact as controls or gonadectomized (females: ovariectomized, OVX; males: orchidectomized, ORX). At least 2 weeks later, KA was injected ip, every 30 minutes at 7.5 mg/kg or less until the animal reached SE, defined by at least 5 generalized seizures (GS, Racine stage 3 or higher). Parameters of susceptibility to GS induction, SE development, and mortality rates were quantified. RESULTS: No differences in seizure susceptibility or mortality were observed between control males and control females. Gonadectomized mice exhibited increased susceptibility and reduced latency to both GS and SE in comparison to corresponding controls of the same sex, but the effects were stronger in males. In addition, ORX males, but not OVX females, exhibited strongly increased seizure-induced mortality. SIGNIFICANCE: The RLDKA protocol is notable for its efficacy in inducing SE and seizure-induced histopathology in C57BL/6J mice, the background for many transgenic strains in current use in epilepsy research. The present results indicate that this protocol may be beneficial for investigating the effects of gonadal hormone replacement on seizure susceptibility, mortality, and seizure-induced histopathology, and that gonadectomy unmasks sex differences in susceptibility to seizures and mortality not observed in gonad-intact controls.
Assuntos
Epilepsia , Estado Epiléptico , Feminino , Camundongos , Animais , Masculino , Ácido Caínico/efeitos adversos , Camundongos Endogâmicos C57BL , Convulsões/patologia , Castração , Esteroides/efeitos adversosRESUMO
Objective: Sex differences in epilepsy appear driven in part due to effects of gonadal steroids, with varying results in experimental models based on species, strain, and method of seizure induction. Furthermore, removing a main source of these steroids via gonadectomy may impact seizure characteristics differently in males and females. Repeated low-dose kainic acid (RLDKA) systemic injection paradigms were recently shown to reliably induce status epilepticus (SE) and hippocampal histopathology in C57BL/6J mice. Here, we investigated whether seizure susceptibility in a RLDKA injection protocol exhibits a sex difference, and whether gonadectomy differentially influences response to this seizure induction paradigm in males and females. Methods: Adult C57BL/6J mice were left gonad-intact as controls or gonadectomized (females: ovariectomized, OVX; males: orchidectomized, ORX). At least 2 weeks later, KA was injected i.p. every 30 minutes at 7.5 mg/kg or less until the animal reached SE, defined by at least 5 generalized seizures (GS, Racine stage 3 or higher). Parameters of susceptibility to GS induction, SE development, and mortality rates were quantified. Results: No differences in seizure susceptibility or mortality were observed between control males and control females. ORX males exhibited increased susceptibility and reduced latency to both GS and SE, but OVX females exhibited increased susceptibility and reduced latency to SE only. However, ORX males, but not OVX females, exhibited strongly increased seizure-induced mortality. Significance: The RLDKA protocol is notable for its efficacy in inducing SE and seizure-induced histopathology in C57BL/6J mice, the background for many transgenic strains in current use in epilepsy research. The present results indicate that this protocol may be beneficial for investigating the effects of gonadal hormone replacement on seizure susceptibility, mortality, and seizure-induced histopathology, and that gonadectomy unmasks sex differences in susceptibility to seizures and mortality not observed in gonad-intact controls.
RESUMO
The ability to recognize and interact with members of the same species is essential for social communication. Investigating the neural substrates of social interest and recognition may offer insights into the behavioral differences present in disorders affecting social behavior. Assays used to study social interest in rodents include the 3-chamber test, a partition test, and a social interaction test. Here, we present a single protocol that can be used to quantify the level of social interest displayed by mice, the ability to distinguish between different individual mice (social recognition), and the level of repetitive self-grooming displayed. In the first part of the protocol, a social habituation/dishabituation test, the time spent by a test mouse sniffing a stimulus mouse is quantified over 9 trials. In the first 8 interactions, the same stimulus mouse is used repeatedly; on the ninth trial, a novel stimulus mouse is presented. Intact social recognition is indicated by a progressive decrease in the investigation time over trials 1-8, and an increase in trial 9. The interval between each social trial is used to quantify self-grooming, a stereotyped repetitive behavior in mice. We also present a method for randomized, blinded analysis of these behaviors to increase rigor and reproducibility of results. Therefore, this single behavioral test enables ready assessment of phenotypes of both social and repetitive behaviors in an integrated manner in the same animals. This feature can be advantageous in understanding interactions between these behaviors and phenotypes in mouse models with genetic variants associated with autism and other neurodevelopmental or neuropsychiatric disorders, which are often characterized by these behavioral differences.