Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
PLoS Pathog ; 12(7): e1005761, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27415008

RESUMO

HIV persists in a small pool of latently infected cells despite antiretroviral therapy (ART). Identifying cellular markers expressed at the surface of these cells may lead to novel therapeutic strategies to reduce the size of the HIV reservoir. We hypothesized that CD4+ T cells expressing immune checkpoint molecules would be enriched in HIV-infected cells in individuals receiving suppressive ART. Expression levels of 7 immune checkpoint molecules (PD-1, CTLA-4, LAG-3, TIGIT, TIM-3, CD160 and 2B4) as well as 4 markers of HIV persistence (integrated and total HIV DNA, 2-LTR circles and cell-associated unspliced HIV RNA) were measured in PBMCs from 48 virally suppressed individuals. Using negative binomial regression models, we identified PD-1, TIGIT and LAG-3 as immune checkpoint molecules positively associated with the frequency of CD4+ T cells harboring integrated HIV DNA. The frequency of CD4+ T cells co-expressing PD-1, TIGIT and LAG-3 independently predicted the frequency of cells harboring integrated HIV DNA. Quantification of HIV genomes in highly purified cell subsets from blood further revealed that expressions of PD-1, TIGIT and LAG-3 were associated with HIV-infected cells in distinct memory CD4+ T cell subsets. CD4+ T cells co-expressing the three markers were highly enriched for integrated viral genomes (median of 8.2 fold compared to total CD4+ T cells). Importantly, most cells carrying inducible HIV genomes expressed at least one of these markers (median contribution of cells expressing LAG-3, PD-1 or TIGIT to the inducible reservoir = 76%). Our data provide evidence that CD4+ T cells expressing PD-1, TIGIT and LAG-3 alone or in combination are enriched for persistent HIV during ART and suggest that immune checkpoint blockers directed against these receptors may represent valuable tools to target latently infected cells in virally suppressed individuals.


Assuntos
Biomarcadores/metabolismo , Linfócitos T CD4-Positivos/virologia , Infecções por HIV/virologia , Subpopulações de Linfócitos T/virologia , Latência Viral/fisiologia , Antirretrovirais , Antígenos CD/biossíntese , Linfócitos T CD4-Positivos/metabolismo , Separação Celular , Estudos Transversais , Feminino , Infecções por HIV/imunologia , Infecções por HIV/metabolismo , HIV-1/imunologia , Humanos , Imunofenotipagem , Masculino , Pessoa de Meia-Idade , Receptor de Morte Celular Programada 1/biossíntese , Receptores Imunológicos/biossíntese , Subpopulações de Linfócitos T/metabolismo , Proteína do Gene 3 de Ativação de Linfócitos
2.
Proc Natl Acad Sci U S A ; 111(32): E3260-8, 2014 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-25071166

RESUMO

Chimeric oncoproteins created by chromosomal translocations are among the most common genetic mutations associated with tumorigenesis. Malignant mucoepidermoid salivary gland tumors, as well as a growing number of solid epithelial-derived tumors, can arise from a recurrent t (11, 19)(q21;p13.1) translocation that generates an unusual chimeric cAMP response element binding protein (CREB)-regulated transcriptional coactivator 1 (CRTC1)/mastermind-like 2 (MAML2) (C1/M2) oncoprotein comprised of two transcriptional coactivators, the CRTC1 and the NOTCH/RBPJ coactivator MAML2. Accordingly, the C1/M2 oncoprotein induces aberrant expression of CREB and NOTCH target genes. Surprisingly, here we report a gain-of-function activity of the C1/M2 oncoprotein that directs its interactions with myelocytomatosis oncogene (MYC) proteins and the activation of MYC transcription targets, including those involved in cell growth and metabolism, survival, and tumorigenesis. These results were validated in human mucoepidermoid tumor cells that harbor the t (11, 19)(q21;p13.1) translocation and express the C1/M2 oncoprotein. Notably, the C1/M2-MYC interaction is necessary for C1/M2-driven cell transformation, and the C1/M2 transcriptional signature predicts other human malignancies having combined involvement of MYC and CREB. These findings suggest that such gain-of-function properties may also be manifest in other oncoprotein fusions found in human cancer and that agents targeting the C1/M2-MYC interface represent an attractive strategy for the development of effective and safe anticancer therapeutics in tumors harboring the t (11, 19) translocation.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Animais , Linhagem Celular , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Cromossomos Humanos Par 1/genética , Cromossomos Humanos Par 19/genética , Proteínas de Ligação a DNA/química , Redes Reguladoras de Genes , Genes myc , Células HEK293 , Humanos , Camundongos , Tumor Mucoepidermoide/genética , Tumor Mucoepidermoide/metabolismo , Células NIH 3T3 , Proteínas Nucleares/química , Proteínas de Fusão Oncogênica/química , Domínios e Motivos de Interação entre Proteínas , Ratos , Neoplasias das Glândulas Salivares/genética , Neoplasias das Glândulas Salivares/metabolismo , Transativadores , Fatores de Transcrição/química , Translocação Genética
3.
J Virol ; 88(21): 12385-96, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25122785

RESUMO

UNLABELLED: A small pool of infected cells persists in HIV-infected individuals receiving antiretroviral therapy (ART). Here, we developed ultrasensitive assays to precisely measure the frequency of cells harboring total HIV DNA, integrated HIV DNA, and two long terminal repeat (2-LTR) circles. These assays are performed on cell lysates, which circumvents the labor-intensive step of DNA extraction, and rely on the coquantification of each HIV molecular form together with CD3 gene sequences to precisely measure cell input. Using primary isolates from HIV subtypes A, B, C, D, and CRF01_A/E, we demonstrate that these assays can efficiently quantify low target copy numbers from diverse HIV subtypes. We further used these assays to measure total HIV DNA, integrated HIV DNA, and 2-LTR circles in CD4(+) T cells from HIV-infected subjects infected with subtype B. All samples obtained from ART-naive subjects were positive for the three HIV molecular forms (n = 15). Total HIV DNA, integrated HIV DNA, and 2-LTR circles were detected in, respectively, 100%, 94%, and 77% of the samples from individuals in which HIV was suppressed by ART. Higher levels of total HIV DNA and 2-LTR circles were detected in untreated subjects than individuals on ART (P = 0.0003 and P = 0.0004, respectively), while the frequency of CD4(+) T cells harboring integrated HIV DNA did not differ between the two groups. These results demonstrate that these novel assays have the ability to quantify very low levels of HIV DNA of multiple HIV subtypes without the need for nucleic acid extraction, making them well suited for the monitoring of viral persistence in large populations of HIV-infected individuals. IMPORTANCE: Since the discovery of viral reservoirs in HIV-infected subjects receiving suppressive ART, measuring the degree of viral persistence has been one of the greatest challenges in the field of HIV research. Here, we report the development and validation of ultrasensitive assays to measure HIV persistence in HIV-infected individuals from multiple geographical regions. These assays are relatively inexpensive, do not require DNA extraction, and can be completed in a single day. Therefore, they are perfectly adapted to monitor HIV persistence in large cohorts of HIV-infected individuals and, given their sensitivity, can be used to monitor the efficacy of therapeutic strategies aimed at interfering with HIV persistence after prolonged ART.


Assuntos
Infecções por HIV/virologia , HIV/isolamento & purificação , Reação em Cadeia da Polimerase/métodos , Carga Viral/métodos , Estudos de Coortes , DNA Viral/análise , DNA Viral/genética , HIV/genética , Humanos , Sensibilidade e Especificidade
4.
Blood ; 121(21): 4321-9, 2013 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-23589672

RESUMO

HIV persists in latently infected memory CD4(+) T cells during antiretroviral therapy (ART). When administered to HIV-infected subjects receiving suppressive ART, interleukin-7 (IL-7) increases the number of CD4(+) T cells by promoting their survival and proliferation. However, little is known about the impact of IL-7 on HIV persistence during ART. By isolating large numbers of CD4(+) T cells from HIV-infected subjects, we demonstrate that IL-7 enhances viral production in productively infected cells but does not disrupt viral latency in latently infected cells. When administered to virally suppressed subjects, IL-7 led to the rapid proliferation of memory CD4(+) T cells, which resulted in a 70% increase in the absolute number of circulating CD4(+) T cells harboring integrated HIV DNA 4 weeks after therapy. The genetic diversity of the viral reservoir increased transiently in the majority of the subjects studied before returning to baseline values. Altogether, our results indicate that IL-7 promotes the mechanisms of HIV persistence during ART by enhancing residual levels of viral production and inducing proliferation of latently infected cells, and suggest that IL-7 does not represent a suitable candidate therapeutic strategy for HIV eradication. This trial was registered at www.clinicaltrials.gov as #NCT00099671 (AIDS Clinical Trials Group protocol 5214).


Assuntos
Antirretrovirais/uso terapêutico , Infecções por HIV/tratamento farmacológico , Infecções por HIV/imunologia , HIV-1/imunologia , Interleucina-7/imunologia , Latência Viral/imunologia , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/virologia , Divisão Celular/imunologia , Células Cultivadas , Variação Genética/efeitos dos fármacos , Variação Genética/imunologia , HIV-1/efeitos dos fármacos , HIV-1/genética , Humanos , Tolerância Imunológica/imunologia , Memória Imunológica/efeitos dos fármacos , Memória Imunológica/imunologia , Interleucina-7/farmacologia , Latência Viral/efeitos dos fármacos , Latência Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA