Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Acta Mater ; 2322022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37599815

RESUMO

Threshold damage mechanisms in brittle covalent-ionic solids are outlined. Fracture and deformation modes are analyzed in terms of classical contact mechanics. Distinctions are made between brittle, ductile and quasiplastic mechanisms in both axial and translational contact. Special attention is devoted to the relatively unexplored subthreshold region where macrofracture is largely suppressed, a region of increasing relevance in the relentless move toward ever smaller devices and precision shaping technologies in the manufacturing sector. Cross-section micrographic images illustrate the fundamental nature of shear events within the hardness deformation zone responsible for crack initiation and propagation. Basic analytical relations for the strengths of surfaces with contact-induced damage in the postthreshold and subthreshold regions are presented, with emphasis on concept rather than fine detail. Strength data for a prototypical brittle material after sharp-indenter damage are presented to highlight the vital role of microstructure in determining transitions between brittle and quasiplastic responses. Pristine defect-free solids are shown to be highly vulnerable to contact damage, even in the subthreshold region. Heterogeneous solids with granular microstructures have lower initial strengths, but are more flaw tolerant. Brittle solids are also highly susceptible to degradation by surface removal processes in wear and machining settings, to a large extent depending again on microstructure. Implications of these findings concerning advanced technological applications of covalent-ionic solids are discussed.

2.
J Am Ceram Soc ; 104(1): 5-22, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34565803

RESUMO

Hard and brittle solids with covalent/ionic bonding are used in a wide range of modern-day manufacturing technologies. Optimization of a shaping process can shorten manufacturing time and cost of component production, and at the same time extend component longevity. The same process may contribute to wear and fatigue degradation in service. Educated development of advanced finishing protocols for this class of solids requires a comprehensive understanding of damage mechanisms at small-scale contacts from a materials science perspective. In this article the fundamentals of brittle-ductile transitions in indentation stress fields are surveyed, with distinctions between axial and sliding loading and blunt and sharp contacts. Attendant deformation and removal mechanisms in microcontact processes are analyzed and discussed in the context of brittle and ductile machining and severe and mild wear. The central role of material microstructure in material removal modes is demonstrated.

3.
Biol Lett ; 16(8): 20200498, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32842897

RESUMO

Teeth of omnivores face a formidable evolutionary challenge: how to protect against fracture and abrasive wear caused by the wide variety of foods they process. It is hypothesized that this challenge is met in part by adaptations in enamel microstructure. The low-crowned teeth of humans and some other omnivorous mammals exhibit multiple fissures running longitudinally along the outer enamel walls, yet remain intact. It is proposed that inter-prism weakness and enamel property gradation act together to avert entry of these fissures into vulnerable inner tooth regions and, at the same time, confer wear resistance at the occlusal surface. A simple indentation experiment is employed to quantify crack paths and energetics in human enamel, and an extended-finite-element model to evaluate longitudinal crack growth histories. Consideration is given as to how tooth microstructure may have played a vital role in human evolution, and by extension to other omnivorous mammals.


Assuntos
Fraturas dos Dentes , Dente , Animais , Esmalte Dentário , Humanos
4.
Bioessays ; 38(1): 89-99, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26643447

RESUMO

The deformation and wear events that underlie microwear and macrowear signals commonly used for dietary reconstruction in fossil animals can be replicated and quantified by controlled laboratory tests on extracted tooth specimens in conjunction with fundamental micromechanics analysis. Key variables governing wear relations include angularity, stiffness (modulus), and size of the contacting particle, along with material properties of enamel. Both axial and sliding contacts can result in the removal of tooth enamel. The degree of removal, characterized by a "wear coefficient," varies strongly with particle content at the occlusal interface. Conditions leading to a transition from mild to severe wear are discussed. Measurements of wear traces can provide information about contact force and particle shape. The potential utility of the micromechanics methodology as an adjunct for investigating tooth durability and reconstructing diet is explored.


Assuntos
Dieta , Comportamento Alimentar/fisiologia , Fósseis , Dente/fisiologia , Animais , Esmalte Dentário/fisiologia , Paleontologia , Desgaste dos Dentes
5.
J Theor Biol ; 338: 59-65, 2013 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-24012462

RESUMO

It is hypothesised that specific tooth forms are adapted to resist fracture, in order to accommodate the high bite forces needed to secure, break down and consume food. Three distinct modes of tooth fracture are identified: longitudinal fracture, where cracks run vertically between the occlusal contact and the crown margin (or vice versa) within the enamel side wall; chipping fracture, where cracks run from near the edge of the occlusal surface to form a spall in the enamel at the side wall; and transverse fracture, where a crack runs horizontally through the entire section of the tooth to break off a fragment and expose the inner pulp. Explicit equations are presented expressing critical bite force for each fracture mode in terms of characteristic tooth dimensions. Distinctive transitions between modes occur depending on tooth form and size, and loading location and direction. Attention is focussed on the relatively flat, low-crowned molars of omnivorous mammals, including humans and other hominins and the elongate canines of living carnivores. At the same time, allusion to other tooth forms - the canines of the extinct sabre-tooth (Smilodon fatalis), the conical dentition of reptiles, and the columnar teeth of herbivores - is made to highlight the generality of the methodology. How these considerations impact on dietary behaviour in fossil and living taxa is discussed.


Assuntos
Evolução Biológica , Fraturas dos Dentes/patologia , Fraturas dos Dentes/fisiopatologia , Adaptação Fisiológica , Animais , Fenômenos Biomecânicos/fisiologia , Força de Mordida , Dente Canino/patologia , Dente Canino/fisiopatologia , Esmalte Dentário/patologia , Esmalte Dentário/fisiopatologia , Dieta/efeitos adversos , Dieta/veterinária , Humanos , Modelos Biológicos , Dente Molar/patologia , Dente Molar/fisiopatologia , Especificidade da Espécie , Fraturas dos Dentes/etiologia , Fraturas dos Dentes/veterinária
6.
Am J Phys Anthropol ; 148(2): 171-7, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22610893

RESUMO

Primate teeth adapt to the physical properties of foods in a variety of ways including changes in occlusal morphology, enamel thickness, and overall size. We conducted a comparative study of extant primates to examine whether their teeth also adapt to foods through variation in the mechanical properties of the enamel. Nanoindentation techniques were used to map profiles of elastic modulus and hardness across tooth sections from the enamel-dentin junction to the outer enamel surface in a broad sample of primates including apes, Old World monkeys, New World monkeys, and lemurs. The measured data profiles feature considerable overlap among species, indicating a high degree of commonality in mechanical properties. These results suggest that differences in the load-bearing capacity of primate molar teeth are more a function of morphology-particularly tooth size and enamel thickness-than of underlying mechanical properties.


Assuntos
Esmalte Dentário/química , Esmalte Dentário/fisiologia , Dieta , Primatas/anatomia & histologia , Primatas/fisiologia , Adaptação Fisiológica , Animais , Módulo de Elasticidade , Dureza , Humanos
7.
Proc Natl Acad Sci U S A ; 106(18): 7289-93, 2009 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-19365079

RESUMO

Tooth enamel is inherently weak, with fracture toughness comparable with glass, yet it is remarkably resilient, surviving millions of functional contacts over a lifetime. We propose a microstructural mechanism of damage resistance, based on observations from ex situ loading of human and sea otter molars (teeth with strikingly similar structural features). Section views of the enamel implicate tufts, hypomineralized crack-like defects at the enamel-dentin junction, as primary fracture sources. We report a stabilization in the evolution of these defects, by "stress shielding" from neighbors, by inhibition of ensuing crack extension from prism interweaving (decussation), and by self-healing. These factors, coupled with the capacity of the tooth configuration to limit the generation of tensile stresses in largely compressive biting, explain how teeth may absorb considerable damage over time without catastrophic failure, an outcome with strong implications concerning the adaptation of animal species to diet.


Assuntos
Força Compressiva , Esmalte Dentário/lesões , Esmalte Dentário/fisiologia , Dente Molar/lesões , Dente Molar/fisiologia , Resistência à Tração , Animais , Esmalte Dentário/ultraestrutura , Humanos , Dente Molar/ultraestrutura
8.
J Hum Evol ; 61(1): 89-96, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21474163

RESUMO

The large, bunodont postcanine teeth in living sea otters (Enhydra lutris) have been likened to those of certain fossil hominins, particularly the 'robust' australopiths (genus Paranthropus). We examine this evolutionary convergence by conducting fracture experiments on extracted molar teeth of sea otters and modern humans (Homo sapiens) to determine how load-bearing capacity relates to tooth morphology and enamel material properties. In situ optical microscopy and x-ray imaging during simulated occlusal loading reveal the nature of the fracture patterns. Explicit fracture relations are used to analyze the data and to extrapolate the results from humans to earlier hominins. It is shown that the molar teeth of sea otters have considerably thinner enamel than those of humans, making sea otter molars more susceptible to certain kinds of fractures. At the same time, the base diameter of sea otter first molars is larger, diminishing the fracture susceptibility in a compensatory manner. We also conduct nanoindentation tests to map out elastic modulus and hardness of sea otter and human molars through a section thickness, and microindentation tests to measure toughness. We find that while sea otter enamel is just as stiff elastically as human enamel, it is a little softer and tougher. The role of these material factors in the capacity of dentition to resist fracture and deformation is considered. From such comparisons, we argue that early hominin species like Paranthropus most likely consumed hard food objects with substantially higher biting forces than those exerted by modern humans.


Assuntos
Adaptação Biológica/fisiologia , Evolução Biológica , Dente Molar/fisiologia , Animais , Fenômenos Biomecânicos/fisiologia , Esmalte Dentário/fisiologia , Dieta , Módulo de Elasticidade/fisiologia , Dureza/fisiologia , Hominidae , Humanos , Mandíbula , Dente Molar/anatomia & histologia , Dente Molar/química , Lontras , Projetos de Pesquisa , Tomografia por Raios X , Suporte de Carga
9.
Interface Focus ; 11(5): 20200070, 2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34938431

RESUMO

Until recently, there had been little attempt in the literature to identify and quantify the underlying mechanics of tooth durability in terms of materials engineering concepts. In humans and most mammals, teeth must endure a lifetime of sustained occlusal mastication-they have to resist fracture and wear. It is well documented that teeth are resilient, but what are the unique features that make this possible? The present article surveys recent materials engineering research aimed at addressing this fundamental question. Elements that determine the mechanics and micromechanics of tooth fracture and wear are analysed: at the macrostructural level, the geometry of the enamel shell and cuspal configuration; and at the microstructural level, interfacial weakness and property gradients. Inferences concerning dietary history in relation to evolutionary pressures are discussed.

10.
Biol Lett ; 6(6): 826-9, 2010 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-20519197

RESUMO

Mammalian tooth enamel is often chipped, providing clear evidence for localized contacts with large hard food objects. Here, we apply a simple fracture equation to estimate peak bite forces directly from chip size. Many fossil hominins exhibit antemortem chips on their posterior teeth, indicating their use of high bite forces. The inference that these species must have consumed large hard foods such as seeds is supported by the occurrence of similar chips among known modern-day seed predators such as orangutans and peccaries. The existence of tooth chip signatures also provides a way of identifying the consumption of rarely eaten foods that dental microwear and isotopic analysis are unlikely to detect.


Assuntos
Força de Mordida , Dieta , Fósseis , Hominidae/anatomia & histologia , Hominidae/fisiologia , Animais , Humanos , Mamíferos/anatomia & histologia , Mamíferos/fisiologia , Sementes , Especificidade da Espécie , Dente/anatomia & histologia , Dente/fisiologia
11.
J Mech Behav Biomed Mater ; 105: 103722, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32279844

RESUMO

The objective of this study is to elucidate the interdependence of competing mechanical degradation processes in biphasic dental materials with ceramic constituents in the region of high-pressure occlusal loading. It is hypothesized that wear resistance in this region correlates inversely with basic material parameters (modulus, hardness, toughness, strength) evaluated from 'standardized' test specimens. Ball-on-flat wear tests in simulation of oral function are used to quantify susceptibility to protracted sliding contact damage. Wear rates for this class of dental material tend to increase with quasistatic parameter values, so the latter do not provide a reliable guide to longevity. The generation of severe-wear facets involves cumulative quasiplastic deformation and microcrack coalescence at the grain level. It is implied that interplay between wear and fracture mechanisms should be an important consideration in future microstructural design of dental ceramics, especially in the quest to balance durability against esthetics.


Assuntos
Cerâmica , Fenômenos Mecânicos , Materiais Dentários , Porcelana Dentária , Dureza , Teste de Materiais , Propriedades de Superfície
12.
J R Soc Interface ; 17(172): 20200613, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33143592

RESUMO

Comparative laboratory sliding wear tests on extracted human molar teeth in artificial saliva with third-body particulates demonstrate that phytoliths can be as effective as silica grit in the abrasion of enamel. A pin-on-disc wear testing configuration is employed, with an extracted molar cusp as a pin on a hard disc antagonist, under loading conditions representative of normal chewing forces. Concentrations and sizes of phytoliths in the wear test media match those of silica particles. Cusp geometries and ensuing abrasion volumes are measured by digital profilometry. The wear data are considered in relation to a debate by evolutionary biologists concerning the relative capacities of intrinsic mineral bodies within plant tissue and exogenous grit in the atmosphere to act as agents of tooth wear in various animal species.


Assuntos
Desgaste dos Dentes , Animais , Humanos , Mastigação , Dente Molar , Plantas , Dióxido de Silício
13.
Am J Phys Anthropol ; 140(4): 653-60, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19890852

RESUMO

Lucas and colleagues recently proposed a model based on fracture and deformation concepts to describe how mammalian tooth enamel may be adapted to the mechanical demands of diet (Lucas et al.: Bioessays 30 2008 374-385). Here we review the applicability of that model by examining existing data on the food mechanical properties and enamel morphology of great apes (Pan, Pongo, and Gorilla). Particular attention is paid to whether the consumption of fallback foods is likely to play a key role in influencing great ape enamel morphology. Our results suggest that this is indeed the case. We also consider the implications of this conclusion on the evolution of the dentition of extinct hominins.


Assuntos
Adaptação Biológica , Esmalte Dentário/anatomia & histologia , Dieta , Hominidae/anatomia & histologia , Modelos Teóricos , Animais , Especificidade da Espécie , Estresse Mecânico
14.
Dent Mater ; 35(1): 15-23, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30172379

RESUMO

OBJECTIVES: To survey simple contact testing protocols for evaluating the mechanical integrity of zirconia dental ceramics. Specifically, to map vital material property variations and to quantify competing damage modes. METHODS: Exploratory contact tests are conducted on layer structures representative of zirconia crowns on dentin. RESULTS: Sharp-tip micro- and nano-indentations were used to investigate the roles of weak interfaces and residual stresses in veneered zirconia, and to map property variations in graded structures. Tests with blunt sphere indenters on flat specimens were used to identify and quantify various critical damage modes in simulated occlusal loading in veneered and monolithic zirconia. SIGNIFICANCE: Contact testing is a powerful tool for elucidating the fracture and deformation modes that control the lifetimes of zirconia dental ceramics. The advocated tests are simple, and provide a sound physical basis for analyzing damage resistance of anatomically-correct crowns and other complex dental prostheses.


Assuntos
Falha de Restauração Dentária , Facetas Dentárias , Cerâmica , Coroas , Porcelana Dentária , Análise do Estresse Dentário , Teste de Materiais , Zircônio
15.
J Mech Behav Biomed Mater ; 92: 144-151, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30685728

RESUMO

An investigation is made of wear mechanisms in a suite of dental materials with a ceramic component and tooth enamel using a laboratory test that simulates clinically observable wear facets. A ball-on-3-specimen wear tester in a tetrahedral configuration with a rotating hard antagonist zirconia sphere is used to produce circular wear scars on polished surfaces of dental materials in artificial saliva. Images of the wear scars enable interpretation of wear mechanisms, and measurements of scar dimensions quantify wear rates. Rates are lowest for zirconia ceramics, highest for lithium disilicate, with feldspathic ceramic and ceramic-polymer composite intermediate. Examination of wear scars reveals surface debris, indicative of a mechanism of material removal at the microstructural level. Microplasticity and microcracking models account for mild and severe wear regions. Wear models are used to evaluate potential longevity for each dental material. It is demonstrated that controlled laboratory testing can identify and quantify wear susceptibility under conditions that reflect the essence of basic occlusal contact. In addition to causing severe material loss, wear damage can lead to premature tooth or prosthetic failure.


Assuntos
Cerâmica , Materiais Dentários , Fenômenos Mecânicos , Esmalte Dentário , Humanos , Teste de Materiais
16.
J Mech Behav Biomed Mater ; 80: 77-80, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29414478

RESUMO

Results are presented for wear tests on human molar enamel in silica particle mediums. Data for different particle concentrations show severe wear indicative of material removal by plasticity-induced microcrack formation, in accordance with earlier studies. The wear rates are independent of low vol% particles, consistent with theoretical models in which occlusal loads are distributed evenly over all interfacial microcontacts. However, perhaps counter-intuitively, the wear rate diminishes substantially at higher vol%. This is attributed to a greater proportion of lower-load microcontacts transitioning into a region of mild wear, where microcracking is suppressed. Implications of these results in relation to evolutionary biology and dentistry are explored.


Assuntos
Esmalte Dentário/química , Dente Molar/fisiopatologia , Estresse Mecânico , Desgaste dos Dentes/fisiopatologia , Humanos , Propriedades de Superfície
17.
Acta Mater ; 55(7): 2479-2488, 2007 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-19562095

RESUMO

A study is made of the competition between failure modes in ceramic-based bilayer structures joined to polymer-based substrates, in simulation of dental crown-like structures with a functional but weak "veneer" layer bonded onto a strong "core" layer. Cyclic contact fatigue tests are conducted in water on model flat systems consisting of glass plates joined to glass, sapphire, alumina or zirconia support layers glued onto polycarbonate bases. Critical numbers of cycles to take each crack mode to failure are plotted as a function of peak contact load on failure maps showing regions in which each fracture mode dominates. In low-cycle conditions, radial and outer cone cracks are competitive in specimens with alumina cores, and outer cone cracks prevail in specimens with zirconia cores; in high-cycle conditions, inner cone cracks prevail in all cases. The roles of other factors, e.g. substrate modulus, layer thickness, indenter radius and residual stresses from specimen preparation, are briefly considered.

18.
J Biomed Mater Res B Appl Biomater ; 82(1): 115-21, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17078086

RESUMO

A study is made of veneer failure by cracking in all-ceramic crown-like layer structures. Model trilayers consisting of a 1 mm thick external glass layer (veneer) joined to a 0.5 mm thick inner stiff and hard ceramic support layer (core) by epoxy bonding or by fusion are fabricated for testing. The resulting bilayers are then glued to a thick compliant polycarbonate slab to simulate a dentin base. The specimens are subjected to cyclic contact (occlusal) loading with spherical indenters in an aqueous environment. Video cameras are used to record the fracture evolution in the transparent glass layer in situ during testing. The dominant failure mode is cone cracking in the glass veneer by traditional outer (Hertzian) cone cracks at higher contact loads and by inner (hydraulically pumped) cone cracks at lower loads. Failure is deemed to occur when one of these cracks reaches the veneer/core interface. The advantages and disadvantages of the alumina and zirconia core materials are discussed in terms of mechanical properties-strength and toughness, as well as stiffness. Consideration is also given to the roles of interface strength and residual thermal expansion mismatch stresses in relation to the different joining methods.


Assuntos
Óxido de Alumínio/química , Falha de Restauração Dentária , Facetas Dentárias , Vidro/química , Zircônio/química , Temperatura Alta , Teste de Materiais , Estresse Mecânico
19.
J Biomed Mater Res B Appl Biomater ; 81(2): 305-11, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17022051

RESUMO

The role of substrate modulus on critical loads to initiate and propagate radial cracks to failure in curved brittle glass shells on compliant polymeric substrates is investigated. Flat glass disks are used to drive the crack system. This configuration is representative of dental crown structures on dentin support in occlusal contact. Specimens are fabricated by truncating glass tubes and filling with epoxy-based substrate materials, with or without alumina filler for modulus control. Moduli ranging from 3 to 15 GPa are produced in this way. Critical loads for both initiation and propagation to failure increase monotonically with substrate modulus, by a factor of two over the data range. Fracture mechanics relations provide a fit to the data, within the scatter bands. Finite element analysis is used to determine stress distributions pertinent to the observed fracture modes. It is suggested that stiffer substrate materials offer potential for improved crown lifetime in dental practice.


Assuntos
Coroas , Falha de Restauração Dentária , Cerâmica , Materiais Dentários , Vidro , Humanos , Técnicas In Vitro , Teste de Materiais , Modelos Dentários , Estresse Mecânico , Propriedades de Superfície
20.
J Biomed Mater Res B Appl Biomater ; 80(1): 78-85, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16615075

RESUMO

Margin cracks in loaded brittle dome structures are investigated. Dome structures consisting of glass shells filled with polymer resin, simulating the essential features of brittle crowns on tooth dentin, provide model test specimens. Disk indenters of diminishing elastic modulus are used to apply axisymmetric loading to the apex of the domes. Previous studies using hard indenters have focused on fractures initiating in the near-contact region of such specimens, including radial cracks at the glass undersurface directly below the contact axis. Here, we focus on fractures initiating at the remote support margins. Margin cracks can become dominant when loading forces are distributed over broad contact areas, as in biting on soft matter, here simulated by balsa wood disks. Cracks preinitiated at the dome edges during the specimen preparation propagate under load around the dome side into segmented, semilunar configurations reminiscent of some all-ceramic crown failures. Finite element analysis is used to determine the basic stress states within the dome structures, and to confirm a shift in maximum tensile stress from the near-contact area to the dome sides with more compliant indenters.


Assuntos
Coroas , Porcelana Dentária , Falha de Restauração Dentária , Análise do Estresse Dentário , Análise de Elementos Finitos , Teste de Materiais , Dureza , Humanos , Resistência à Tração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA