Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Chembiochem ; 24(9): e202300133, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-36942622

RESUMO

S-Adenosylmethionine (SAM) is an enzyme cofactor involved in methylation, aminopropyl transfer, and radical reactions. This versatility renders SAM-dependent enzymes of great interest in biocatalysis. The usage of SAM analogues adds to this diversity. However, high cost and instability of the cofactor impedes the investigation and usage of these enzymes. While SAM regeneration protocols from the methyltransferase (MT) byproduct S-adenosylhomocysteine are available, aminopropyl transferases and radical SAM enzymes are not covered. Here, we report a set of efficient one-pot systems to supply or regenerate SAM and SAM analogues for all three enzyme classes. The systems' flexibility is showcased by the transfer of an ethyl group with a cobalamin-dependent radical SAM MT using S-adenosylethionine as a cofactor. This shows the potential of SAM (analogue) supply and regeneration for the application of diverse chemistry, as well as for mechanistic studies using cofactor analogues.


Assuntos
Biomimética , S-Adenosilmetionina , S-Adenosilmetionina/metabolismo , Biocatálise , Alquilação , Metilação , Metiltransferases/metabolismo
2.
Nature ; 543(7643): 78-82, 2017 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-28225763

RESUMO

Methane biogenesis in methanogens is mediated by methyl-coenzyme M reductase, an enzyme that is also responsible for the utilization of methane through anaerobic methane oxidation. The enzyme uses an ancillary factor called coenzyme F430, a nickel-containing modified tetrapyrrole that promotes catalysis through a methyl radical/Ni(ii)-thiolate intermediate. However, it is unclear how coenzyme F430 is synthesized from the common primogenitor uroporphyrinogen iii, incorporating 11 steric centres into the macrocycle, although the pathway must involve chelation, amidation, macrocyclic ring reduction, lactamization and carbocyclic ring formation. Here we identify the proteins that catalyse the biosynthesis of coenzyme F430 from sirohydrochlorin, termed CfbA-CfbE, and demonstrate their activity. The research completes our understanding of how the repertoire of tetrapyrrole-based pigments are constructed, permitting the development of recombinant systems to use these metalloprosthetic groups more widely.


Assuntos
Biocatálise , Vias Biossintéticas , Coenzimas/biossíntese , Metaloporfirinas/metabolismo , Metano/biossíntese , Methanosarcina barkeri/enzimologia , Tetrapirróis/biossíntese , Amidoidrolases/genética , Amidoidrolases/metabolismo , Vias Biossintéticas/genética , Coenzimas/química , Liases/genética , Liases/metabolismo , Metaloporfirinas/química , Metano/análogos & derivados , Metano/metabolismo , Methanosarcina barkeri/genética , Methanosarcina barkeri/metabolismo , Família Multigênica , Níquel/metabolismo , Oxirredutases/genética , Oxirredutases/metabolismo , Tetrapirróis/química , Uroporfirinas/química , Uroporfirinas/metabolismo
3.
Angew Chem Int Ed Engl ; 61(32): e202204198, 2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35638156

RESUMO

Methyl-coenzyme M reductase, which is responsible for the production of the greenhouse gas methane during biological methane formation, carries several unique posttranslational amino acid modifications, including a 2-(S)-methylglutamine. The enzyme responsible for the Cα -methylation of this glutamine is not known. Herein, we identify and characterize a cobalamin-dependent radical SAM enzyme as the glutamine C-methyltransferase. The recombinant protein from Methanoculleus thermophilus binds cobalamin in a base-off, His-off conformation and contains a single [4Fe-4S] cluster. The cobalamin cofactor cycles between the methyl-cob(III)alamin, cob(II)alamin and cob(I)alamin states during catalysis and produces methylated substrate, 5'-deoxyadenosine and S-adenosyl-l-homocysteine in a 1 : 1 : 1 ratio. The newly identified glutamine C-methyltransferase belongs to the class B radical SAM methyltransferases known to catalyze challenging methylation reactions of sp3 -hybridized carbon atoms.


Assuntos
S-Adenosilmetionina , Vitamina B 12 , Glutamina/metabolismo , Metano , Metilação , Metiltransferases/metabolismo , Oxirredutases , S-Adenosilmetionina/química , Vitamina B 12/química
4.
Chembiochem ; 21(12): 1733-1741, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-31958206

RESUMO

The engineering of transgenic organisms with the ability to fix nitrogen is an attractive possibility. However, oxygen sensitivity of nitrogenase, mainly conferred by the reductase component (NifH)2 , is an imminent problem. Nitrogenase-like enzymes involved in coenzyme F430 and chlorophyll biosynthesis utilize the highly homologous reductases (CfbC)2 and (ChlL)2 , respectively. Chimeric protein-protein interactions of these reductases with the catalytic component of nitrogenase (MoFe protein) did not support nitrogenase activity. Nucleotide-dependent association and dissociation of these complexes was investigated, but (CfbC)2 and wild-type (ChlL)2 showed no modulation of the binding affinity. By contrast, the interaction between the (ChlL)2 mutant Y127S and the MoFe protein was markedly increased in the presence of ATP (or ATP analogues) and reduced in the ADP state. Upon formation of the octameric (ChlL)2 MoFe(ChlL)2 complex, the ATPase activity of this variant is triggered, as seen in the homologous nitrogenase system. Thus, the described reductase(s) might be an attractive tool for further elucidation of the diverse functions of (NifH)2 and the rational design of a more robust reductase.


Assuntos
Methanosarcina barkeri/enzimologia , Molibdoferredoxina/química , Nitrogenase/química , Oxirredutases/química , Estrutura Molecular , Molibdoferredoxina/metabolismo , Nitrogenase/metabolismo , Oxirredutases/metabolismo , Ligação Proteica
6.
Adv Exp Med Biol ; 925: 147-161, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27957709

RESUMO

The sophisticated biochemistry of nitrogenase plays a fundamental role for the biosynthesis of tetrapyrrole molecules, acting as key components of photosynthesis and methanogenesis. Three nitrogenase-like metalloenzymes have been characterized to date. Synthesis of chlorophylls and bacteriochlorophylls involves the reduction of the C17-C18 double bond of the conjugated ring system of protochlorophyllide which is catalyzed by the multi-subunit enzyme dark operative protochlorophyllide oxidoreductase (DPOR). Subsequently, biosynthesis of all bacteriochlorophylls requires the reduction of the C7-C8 double bond by a second nitrogenase-like enzyme termed chlorophyllide oxidoreductase (COR). Mechanistically, DPOR and COR make use of a reductase component which links ATP hydrolysis to conformational changes. This dynamic switch protein is triggering the transient association between the reductase and the core catalytic protein complex, thereby facilitating the transduction of electrons via two [4Fe4S] clusters. X-ray crystallographic structural investigations in combination with biochemical experiments revealed the molecular basis of the underlying energy transduction mechanism. The unique nickel-containing tetrapyrrole cofactor F430 is located in the active site of methyl-coenzyme M reductase, which is catalyzing the final step of methane formation in methanogenic archaea. The nitrogenase-like protein NflH/NflD has been proposed to catalyze one or more ring reduction steps during the biosynthesis of F430. The present working hypothesis mirrors a DPOR and COR related enzyme mechanism of NflH/NflD. Furthermore, nfl-encoded proteins were suggested as "simplified" ancestors lying basal in the phylogenetic tree between nitrogenase and DPOR/COR.


Assuntos
Proteínas de Bactérias/química , Bacterioclorofilas/química , Nitrogenase/química , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/química , Oxirredutases/química , Tetrapirróis/química , Azotobacter vinelandii/genética , Azotobacter vinelandii/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bacterioclorofilas/biossíntese , Biocatálise , Expressão Gênica , Nitrogenase/genética , Nitrogenase/metabolismo , Oxirredução , Oxirredutases/genética , Oxirredutases/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Fotossíntese/genética , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Estrutura Terciária de Proteína , Rhodobacter capsulatus/genética , Rhodobacter capsulatus/metabolismo , Roseobacter/genética , Roseobacter/metabolismo , Tetrapirróis/biossíntese
7.
J Biol Chem ; 289(44): 30753-30762, 2014 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-25204657

RESUMO

Heme d1 plays an important role in denitrification as the essential cofactor of the cytochrome cd1 nitrite reductase NirS. At present, the biosynthesis of heme d1 is only partially understood. The last step of heme d1 biosynthesis requires a so far unknown enzyme that catalyzes the introduction of a double bond into one of the propionate side chains of the tetrapyrrole yielding the corresponding acrylate side chain. In this study, we show that a Pseudomonas aeruginosa PAO1 strain lacking the NirN protein does not produce heme d1. Instead, the NirS purified from this strain contains the heme d1 precursor dihydro-heme d1 lacking the acrylic double bond, as indicated by UV-visible absorption spectroscopy and resonance Raman spectroscopy. Furthermore, the dihydro-heme d1 was extracted from purified NirS and characterized by UV-visible absorption spectroscopy and finally identified by high-resolution electrospray ionization mass spectrometry. Moreover, we show that purified NirN from P. aeruginosa binds the dihydro-heme d1 and catalyzes the introduction of the acrylic double bond in vitro. Strikingly, NirN uses an electron bifurcation mechanism for the two-electron oxidation reaction, during which one electron ends up on its heme c cofactor and the second electron reduces the substrate/product from the ferric to the ferrous state. On the basis of our results, we propose novel roles for the proteins NirN and NirF during the biosynthesis of heme d1.


Assuntos
Proteínas de Bactérias/química , Heme/análogos & derivados , Oxirredutases/química , Pseudomonas aeruginosa/enzimologia , Anaerobiose , Heme/biossíntese , Heme/química , Oxirredução , Ligação Proteica , Análise Espectral Raman
8.
Archaea ; 2014: 327637, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24669201

RESUMO

In living organisms heme is formed from the common precursor uroporphyrinogen III by either one of two substantially different pathways. In contrast to eukaryotes and most bacteria which employ the so-called "classical" heme biosynthesis pathway, the archaea use an alternative route. In this pathway, heme is formed from uroporphyrinogen III via the intermediates precorrin-2, sirohydrochlorin, siroheme, 12,18-didecarboxysiroheme, and iron-coproporphyrin III. In this study the heme biosynthesis proteins AhbAB, AhbC, and AhbD from Methanosarcina barkeri were functionally characterized. Using an in vivo enzyme activity assay it was shown that AhbA and AhbB (Mbar_A1459 and Mbar_A1460) together catalyze the conversion of siroheme into 12,18-didecarboxysiroheme. The two proteins form a heterodimeric complex which might be subject to feedback regulation by the pathway end-product heme. Further, AhbC (Mbar_A1793) was shown to catalyze the formation of iron-coproporphyrin III in vivo. Finally, recombinant AhbD (Mbar_A1458) was produced in E. coli and purified indicating that this protein most likely contains two [4Fe-4S] clusters. Using an in vitro enzyme activity assay it was demonstrated that AhbD catalyzes the conversion of iron-coproporphyrin III into heme.


Assuntos
Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Vias Biossintéticas/genética , Heme/biossíntese , Methanosarcina barkeri/genética , Methanosarcina barkeri/metabolismo , Methanosarcina barkeri/enzimologia , Multimerização Proteica , Uroporfirinogênios/metabolismo
9.
Biochem J ; 451(2): 205-16, 2013 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-23363548

RESUMO

The first enzyme of haem biosynthesis, ALAS (5-aminolaevulinic acid synthase), catalyses the pyridoxal 5'-phosphate-dependent condensation of glycine and succinyl-CoA to 5-aminolaevulinic acid, CO(2) and CoA. The crystal structure of Rhodobacter capsulatus ALAS provides the first snapshots of the structural basis for substrate binding and catalysis. To elucidate the functional role of single amino acid residues in the active site for substrate discrimination, substrate positioning, catalysis and structural protein rearrangements, multiple ALAS variants were generated. The quinonoid intermediates I and II were visualized in single turnover experiments, indicating the presence of an α-amino-ß-oxoadipate intermediate. Further evidence was obtained by the pH-dependent formation of quinonoid II from the product 5-aminolaevulinic acid. The function of Arg(21), Thr(83), Asn(85) and Ile(86), all involved in the co-ordination of the succinyl-CoA substrate carboxy group, were analysed kinetically. Arg(21), Thr(83)and Ile(86), all of which are located in the second subunit to the intersubunit active site, were found to be essential. Their location in the second subunit provides the basis for the required structural dynamics during the complex condensation of both substrates. Utilization of L-alanine by the ALAS variant T83S indicated the importance of this residue for the selectiveness of binding with the glycine substrate compared with related amino acids. Asn(85) was found to be solely important for succinyl-CoA substrate recognition and selectiveness of binding. The results of the present study provide a novel dynamic view on the structural basis of ALAS substrate-binding and catalysis.


Assuntos
5-Aminolevulinato Sintetase/química , 5-Aminolevulinato Sintetase/metabolismo , Rhodobacter capsulatus/enzimologia , 5-Aminolevulinato Sintetase/genética , Acil Coenzima A/química , Acil Coenzima A/metabolismo , Arginina/química , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Catálise , Domínio Catalítico , Glicina/química , Glicina/metabolismo , Concentração de Íons de Hidrogênio , Cinética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Especificidade por Substrato , Treonina/química
10.
FEBS J ; 291(14): 3233-3248, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38588274

RESUMO

Coenzyme F430 is a nickel-containing tetrapyrrole, serving as the prosthetic group of methyl-coenzyme M reductase in methanogenic and methanotrophic archaea. During coenzyme F430 biosynthesis, the tetrapyrrole macrocycle is reduced by the nitrogenase-like CfbC/D system consisting of the reductase component CfbC and the catalytic component CfbD. Both components are homodimeric proteins, each carrying a [4Fe-4S] cluster. Here, the ligands of the [4Fe-4S] clusters of CfbC2 and CfbD2 were identified revealing an all cysteine ligation of both clusters. Moreover, the midpoint potentials of the [4Fe-4S] clusters were determined to be -256 mV for CfbC2 and -407 mV for CfbD2. These midpoint potentials indicate that the consecutive thermodynamically unfavorable 6 individual "up-hill" electron transfers to the organic moiety of the Ni2+-sirohydrochlorin a,c-diamide substrate require an intricate interplay of ATP-binding, hydrolysis, protein complex formation and release to drive product formation, which is a common theme in nitrogenase-like systems.


Assuntos
Proteínas Ferro-Enxofre , Proteínas Ferro-Enxofre/metabolismo , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/química , Oxirredutases/metabolismo , Oxirredutases/genética , Oxirredutases/química , Nitrogenase/metabolismo , Nitrogenase/química , Nitrogenase/genética , Proteínas Arqueais/metabolismo , Proteínas Arqueais/genética , Proteínas Arqueais/química , Cisteína/metabolismo , Enxofre/metabolismo , Enxofre/química , Metaloporfirinas
11.
Biochem J ; 442(2): 335-43, 2012 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-22142238

RESUMO

Lactococcus lactis cannot synthesize haem, but when supplied with haem, expresses a cytochrome bd oxidase. Apart from the cydAB structural genes for this oxidase, L. lactis features two additional genes, hemH and hemW (hemN), with conjectured functions in haem metabolism. While it appears clear that hemH encodes a ferrochelatase, no function is known for hemW. HemW-like proteins occur in bacteria, plants and animals, and are usually annotated as CPDHs (coproporphyrinogen III dehydrogenases). However, such a function has never been demonstrated for a HemW-like protein. We here studied HemW of L. lactis and showed that it is devoid of CPDH activity in vivo and in vitro. Recombinantly produced, purified HemW contained an Fe-S (iron-sulfur) cluster and was dimeric; upon loss of the iron, the protein became monomeric. Both forms of the protein covalently bound haem b in vitro, with a stoichiometry of one haem per monomer and a KD of 8 µM. In vivo, HemW occurred as a haem-free cytosolic form, as well as a haem-containing membrane-associated form. Addition of L. lactis membranes to haem-containing HemW triggered the release of haem from HemW in vitro. On the basis of these findings, we propose a role of HemW in haem trafficking. HemW-like proteins form a distinct phylogenetic clade that has not previously been recognized.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Transporte/metabolismo , Coproporfirinogênio Oxidase/metabolismo , Heme/metabolismo , Hemeproteínas/metabolismo , Lactococcus lactis/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sequência de Bases , Proteínas de Transporte/química , Proteínas de Transporte/genética , Coproporfirinogênio Oxidase/química , Coproporfirinogênio Oxidase/genética , DNA Bacteriano/genética , Dimerização , Proteínas de Escherichia coli/genética , Genes Bacterianos , Proteínas Ligantes de Grupo Heme , Hemeproteínas/química , Hemeproteínas/genética , Lactococcus lactis/genética , Dados de Sequência Molecular , Filogenia , Estrutura Quaternária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos
12.
Biomolecules ; 13(8)2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37627333

RESUMO

In archaea and sulfate-reducing bacteria, heme is synthesized via the siroheme-dependent pathway. The last step of this route is catalyzed by the Radical SAM enzyme AhbD and consists of the conversion of iron-coproporphyrin III into heme. AhbD belongs to the subfamily of Radical SAM enzymes containing a SPASM/Twitch domain carrying either one or two auxiliary iron-sulfur clusters in addition to the characteristic Radical SAM cluster. In previous studies, AhbD was reported to contain one auxiliary [4Fe-4S] cluster. In this study, the amino acid sequence motifs containing conserved cysteine residues in AhbD proteins from different archaea and sulfate-reducing bacteria were reanalyzed. Amino acid sequence alignments and computational structural models of AhbD suggested that a subset of AhbD proteins possesses the full SPASM motif and might contain two auxiliary iron-sulfur clusters (AuxI and AuxII). Therefore, the cluster content of AhbD from Methanosarcina barkeri was studied using enzyme variants lacking individual clusters. The purified enzymes were analyzed using UV/Visible absorption and EPR spectroscopy as well as iron/sulfide determinations showing that AhbD from M. barkeri contains two auxiliary [4Fe-4S] clusters. Heme synthase activity assays suggested that the AuxI cluster might be involved in binding the reaction intermediate and both clusters potentially participate in electron transfer.


Assuntos
Ferroquelatase , Methanosarcina barkeri , Archaea , Heme , Ferro , Sulfatos
13.
J Biol Chem ; 286(30): 26754-67, 2011 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-21632530

RESUMO

During the biosynthesis of heme d(1), the essential cofactor of cytochrome cd(1) nitrite reductase, the NirE protein catalyzes the methylation of uroporphyrinogen III to precorrin-2 using S-adenosyl-L-methionine (SAM) as the methyl group donor. The crystal structure of Pseudomonas aeruginosa NirE in complex with its substrate uroporphyrinogen III and the reaction by-product S-adenosyl-L-homocysteine (SAH) was solved to 2.0 Å resolution. This represents the first enzyme-substrate complex structure for a SAM-dependent uroporphyrinogen III methyltransferase. The large substrate binds on top of the SAH in a "puckered" conformation in which the two pyrrole rings facing each other point into the same direction either upward or downward. Three arginine residues, a histidine, and a methionine are involved in the coordination of uroporphyrinogen III. Through site-directed mutagenesis of the nirE gene and biochemical characterization of the corresponding NirE variants the amino acid residues Arg-111, Glu-114, and Arg-149 were identified to be involved in NirE catalysis. Based on our structural and biochemical findings, we propose a potential catalytic mechanism for NirE in which the methyl transfer reaction is initiated by an arginine catalyzed proton abstraction from the C-20 position of the substrate.


Assuntos
Proteínas de Bactérias/química , Metiltransferases/química , Pseudomonas aeruginosa/enzimologia , Uroporfirinogênios/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Catálise , Cristalografia por Raios X , Heme/análogos & derivados , Heme/biossíntese , Heme/química , Heme/metabolismo , Metiltransferases/genética , Metiltransferases/metabolismo , Mutagênese Sítio-Dirigida , Mutação de Sentido Incorreto , Estrutura Terciária de Proteína , Pseudomonas aeruginosa/genética , Uroporfirinogênios/genética , Uroporfirinogênios/metabolismo
14.
ACS Bio Med Chem Au ; 2(3): 196-204, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37101575

RESUMO

The anaerobic biosyntheses of heme, heme d 1, and bacteriochlorophyll all require the action of radical SAM enzymes. During heme biosynthesis in some bacteria, coproporphyrinogen III dehydrogenase (CgdH) catalyzes the decarboxylation of two propionate side chains of coproporphyrinogen III to the corresponding vinyl groups of protoporphyrinogen IX. Its solved crystal structure was the first published structure for a radical SAM enzyme. In bacteria, heme is inserted into enzymes by the cytoplasmic heme chaperone HemW, a radical SAM enzyme structurally highly related to CgdH. In an alternative heme biosynthesis route found in archaea and sulfate-reducing bacteria, the two radical SAM enzymes AhbC and AhbD catalyze the removal of two acetate groups (AhbC) or the decarboxylation of two propionate side chains (AhbD). NirJ, a close homologue of AhbC, is required for propionate side chain removal during the formation of heme d 1 in some denitrifying bacteria. Biosynthesis of the fifth ring (ring E) of all chlorophylls is based on an unusual six-electron oxidative cyclization step. The sophisticated conversion of Mg-protoporphyrin IX monomethylester to protochlorophyllide is facilitated by an oxygen-independent cyclase termed BchE, which is a cobalamin-dependent radical SAM enzyme. Most of the radical SAM enzymes involved in tetrapyrrole biosynthesis were recognized as such by Sofia et al. in 2001 (Nucleic Acids Res.2001, 29, 1097-1106) and were biochemically characterized thereafter. Although much has been achieved, the challenging tetrapyrrole substrates represent a limiting factor for enzyme/substrate cocrystallization and the ultimate elucidation of the corresponding enzyme mechanisms.

15.
J Biol Chem ; 285(30): 23331-41, 2010 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-20460376

RESUMO

Assembly of iron-sulfur (Fe-S) clusters and maturation of Fe-S proteins in vivo require complex machineries. In Escherichia coli, under adverse stress conditions, this process is achieved by the SUF system that contains six proteins as follows: SufA, SufB, SufC, SufD, SufS, and SufE. Here, we provide a detailed characterization of the SufBCD complex whose function was so far unknown. Using biochemical and spectroscopic analyses, we demonstrate the following: (i) the complex as isolated exists mainly in a 1:2:1 (B:C:D) stoichiometry; (ii) the complex can assemble a [4Fe-4S] cluster in vitro and transfer it to target proteins; and (iii) the complex binds one molecule of flavin adenine nucleotide per SufBC(2)D complex, only in its reduced form (FADH(2)), which has the ability to reduce ferric iron. These results suggest that the SufBC(2)D complex functions as a novel type of scaffold protein that assembles an Fe-S cluster through the mobilization of sulfur from the SufSE cysteine desulfurase and the FADH(2)-dependent reductive mobilization of iron.


Assuntos
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Flavina-Adenina Dinucleotídeo/análogos & derivados , Proteínas Ferro-Enxofre/química , Proteínas Ferro-Enxofre/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Sequência de Aminoácidos , Anaerobiose , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Escherichia coli/metabolismo , Flavina-Adenina Dinucleotídeo/metabolismo , Dados de Sequência Molecular , Oxidantes/metabolismo , Oxirredução
16.
Biochim Biophys Acta Mol Cell Res ; 1868(1): 118861, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32976912

RESUMO

The cyclic tetrapyrrole heme is used as a prosthetic group in a broad variety of different proteins in almost all organisms. Often, it is essential for vital biochemical processes such as aerobic and anaerobic respiration as well as photosynthesis. In Nature, heme is made from the common tetrapyrrole precursor 5-aminolevulinic acid, and for a long time it was assumed that heme is biosynthesized by a single, common pathway in all organisms. However, although this is indeed the case in eukaryotes, heme biosynthesis is more diverse in the prokaryotic world, where two additional pathways exist. The final elucidation of the two 'alternative' heme biosynthesis routes operating in some bacteria and archaea was achieved within the last decade. This review summarizes the three different heme biosynthesis pathways with a special emphasis on the two 'new' prokaryotic routes.


Assuntos
Aerobiose/genética , Anaerobiose/genética , Heme/genética , Tetrapirróis/metabolismo , Ácido Aminolevulínico/metabolismo , Archaea/genética , Bactérias/genética , Heme/biossíntese , Fotossíntese/genética , Células Procarióticas/metabolismo , Tetrapirróis/genética
17.
FEBS J ; 288(1): 244-261, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32255259

RESUMO

Certain facultative anaerobes such as the opportunistic human pathogen Pseudomonas aeruginosa can respire on nitrate, a process generally known as denitrification. This enables denitrifying bacteria to survive in anoxic environments and contributes, for example, to the formation of biofilm, hence increasing difficulties in eradicating P. aeruginosa infections. A central step in denitrification is the reduction of nitrite to nitric oxide by nitrite reductase NirS, an enzyme that requires the unique cofactor heme d1 . While heme d1 biosynthesis is mostly understood, the role of the essential periplasmatic protein NirF in this pathway remains unclear. Here, we have determined crystal structures of NirF and its complex with dihydroheme d1 , the last intermediate of heme d1 biosynthesis. We found that NirF forms a bottom-to-bottom ß-propeller homodimer and confirmed this by multi-angle light and small-angle X-ray scattering. The N termini are adjacent to each other and project away from the core structure, which hints at simultaneous membrane anchoring via both N termini. Further, the complex with dihydroheme d1 allowed us to probe the importance of specific residues in the vicinity of the ligand binding site, revealing residues not required for binding or stability of NirF but essential for denitrification in experiments with complemented mutants of a ΔnirF strain of P. aeruginosa. Together, these data suggest that NirF possesses a yet unknown enzymatic activity and is not simply a binding protein of heme d1 derivatives. DATABASE: Structural data are available in PDB database under the accession numbers 6TV2 and 6TV9.


Assuntos
Proteínas de Bactérias/química , Heme/análogos & derivados , Periplasma/genética , Pseudomonas aeruginosa/genética , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Clonagem Molecular , Cristalografia por Raios X , Desnitrificação/fisiologia , Escherichia coli/genética , Escherichia coli/metabolismo , Deleção de Genes , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Heme/biossíntese , Heme/química , Modelos Moleculares , Periplasma/química , Periplasma/enzimologia , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Pseudomonas aeruginosa/química , Pseudomonas aeruginosa/enzimologia , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Termodinâmica
18.
Archaea ; 2010: 175050, 2010 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-21197080

RESUMO

Heme is an essential prosthetic group for many proteins involved in fundamental biological processes in all three domains of life. In Eukaryota and Bacteria heme is formed via a conserved and well-studied biosynthetic pathway. Surprisingly, in Archaea heme biosynthesis proceeds via an alternative route which is poorly understood. In order to formulate a working hypothesis for this novel pathway, we searched 59 completely sequenced archaeal genomes for the presence of gene clusters consisting of established heme biosynthetic genes and colocalized conserved candidate genes. Within the majority of archaeal genomes it was possible to identify such heme biosynthesis gene clusters. From this analysis we have been able to identify several novel heme biosynthesis genes that are restricted to archaea. Intriguingly, several of the encoded proteins display similarity to enzymes involved in heme d(1) biosynthesis. To initiate an experimental verification of our proposals two Methanosarcina barkeri proteins predicted to catalyze the initial steps of archaeal heme biosynthesis were recombinantly produced, purified, and their predicted enzymatic functions verified.


Assuntos
Archaea/genética , Archaea/metabolismo , Vias Biossintéticas/genética , Heme/biossíntese , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Bactérias/genética , Clonagem Molecular , Biologia Computacional/métodos , Eucariotos/genética , Genes Arqueais , Methanosarcina barkeri/enzimologia , Modelos Biológicos , Família Multigênica , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos
19.
Biol Chem ; 391(1): 55-63, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19919179

RESUMO

During heme biosynthesis the oxygen-independent coproporphyrinogen III oxidase HemN catalyzes the oxidative decarboxylation of the two propionate side chains on rings A and B of coproporphyrinogen III to the corresponding vinyl groups to yield protoporphyrinogen IX. Here, the sequence of the two decarboxylation steps during HemN catalysis was investigated. A reaction intermediate of HemN activity was isolated by HPLC analysis and identified as monovinyltripropionic acid porphyrin by mass spectrometry. This monovinylic reaction intermediate exhibited identical chromatographic behavior during HPLC analysis as harderoporphyrin (3-vinyl-8,13,17-tripropionic acid-2,7,12,18-tetramethylporphyrin). Furthermore, HemN was able to utilize chemically synthesized harderoporphyrinogen as substrate and converted it to protoporphyrinogen IX. These results suggest that during HemN catalysis the propionate side chain of ring A of coproporphyrinogen III is decarboxylated prior to that of ring B.


Assuntos
Coproporfirinogênio Oxidase/metabolismo , Coproporfirinogênios/metabolismo , Porfirinogênios/metabolismo , Protoporfirinas/biossíntese , Cromatografia Líquida de Alta Pressão , Humanos , Ressonância Magnética Nuclear Biomolecular
20.
Sci Rep ; 10(1): 2100, 2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-32034217

RESUMO

Methionine synthases are essential enzymes for amino acid and methyl group metabolism in all domains of life. Here, we describe a putatively anciently derived type of methionine synthase yet unknown in bacteria, here referred to as core-MetE. The enzyme appears to represent a minimal MetE form and transfers methyl groups from methylcobalamin instead of methyl-tetrahydrofolate to homocysteine. Accordingly, it does not possess the tetrahydrofolate binding domain described for canonical bacterial MetE proteins. In Dehalococcoides mccartyi strain CBDB1, an obligate anaerobic, mesophilic, slowly growing organohalide-respiring bacterium, it is encoded by the locus cbdbA481. In line with the observation to not accept methyl groups from methyl-tetrahydrofolate, all known genomes of bacteria of the class Dehalococcoidia lack metF encoding for methylene-tetrahydrofolate reductase synthesizing methyl-tetrahydrofolate, but all contain a core-metE gene. We heterologously expressed core-MetECBDB in E. coli and purified the 38 kDa protein. Core-MetECBDB exhibited Michaelis-Menten kinetics with respect to methylcob(III)alamin (KM ≈ 240 µM) and L-homocysteine (KM ≈ 50 µM). Only methylcob(III)alamin was found to be active as methyl donor with a kcat ≈ 60 s-1. Core-MetECBDB did not functionally complement metE-deficient E. coli strain DH5α (ΔmetE::kan) suggesting that core-MetECBDB and the canonical MetE enzyme from E. coli have different enzymatic specificities also in vivo. Core-MetE appears to be similar to a MetE-ancestor evolved before LUCA (last universal common ancestor) using methylated cobalamins as methyl donor whereas the canonical MetE consists of a tandem repeat and might have evolved by duplication of the core-MetE and diversification of the N-terminal part to a tetrahydrofolate-binding domain.


Assuntos
5-Metiltetra-Hidrofolato-Homocisteína S-Metiltransferase/metabolismo , 5-Metiltetra-Hidrofolato-Homocisteína S-Metiltransferase/genética , 5-Metiltetra-Hidrofolato-Homocisteína S-Metiltransferase/isolamento & purificação , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/metabolismo , Chloroflexi/enzimologia , Chloroflexi/genética , Chloroflexi/metabolismo , Dehalococcoides , Escherichia coli/enzimologia , Escherichia coli/genética , Escherichia coli/metabolismo , Genoma Bacteriano/genética , Homocisteína/metabolismo , Metionina/metabolismo , Metilação , Filogenia , Vitamina B 12/análogos & derivados , Vitamina B 12/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA