Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(15)2022 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-35957328

RESUMO

Heart rate variability (HRV) has been studied for decades in clinical environments. Currently, the exponential growth of wearable devices in health monitoring is leading to new challenges that need to be solved. These devices have relatively poor signal quality and are affected by numerous motion artifacts, with data loss being the main stumbling block for their use in HRV analysis. In the present paper, it is shown how data loss affects HRV metrics in the time domain and frequency domain and Poincaré plots. A gap-filling method is proposed and compared to other existing approaches to alleviate these effects, both with simulated (16 subjects) and real (20 subjects) missing data. Two different data loss scenarios have been simulated: (i) scattered missing beats, related to a low signal to noise ratio; and (ii) bursts of missing beats, with the most common due to motion artifacts. In addition, a real database of photoplethysmography-derived pulse detection series provided by Apple Watch during a protocol including relax and stress stages is analyzed. The best correction method and maximum acceptable missing beats are given. Results suggest that correction without gap filling is the best option for the standard deviation of the normal-to-normal intervals (SDNN), root mean square of successive differences (RMSSD) and Poincaré plot metrics in datasets with bursts of missing beats predominance (p<0.05), whereas they benefit from gap-filling approaches in the case of scattered missing beats (p<0.05). Gap-filling approaches are also the best for frequency-domain metrics (p<0.05). The findings of this work are useful for the design of robust HRV applications depending on missing data tolerance and the desired HRV metrics.


Assuntos
Benchmarking , Dispositivos Eletrônicos Vestíveis , Artefatos , Eletrocardiografia , Frequência Cardíaca/fisiologia , Humanos , Fotopletismografia
2.
Sensors (Basel) ; 20(16)2020 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-32824420

RESUMO

Long-term electrocardiogram (ECG) recordings while performing normal daily routines are often corrupted with motion artifacts, which in turn, can result in the incorrect calculation of heart rates. Heart rates are important clinical information, as they can be used for analysis of heart-rate variability and detection of cardiac arrhythmias. In this study, we present an algorithm for denoising ECG signals acquired with a wearable armband device. The armband was worn on the upper left arm by one male participant, and we simultaneously recorded three ECG channels for 24 h. We extracted 10-s sequences from armband recordings corrupted with added noise and motion artifacts. Denoising was performed using the redundant convolutional encoder-decoder (R-CED), a fully convolutional network. We measured the performance by detecting R-peaks in clean, noisy, and denoised sequences and by calculating signal quality indices: signal-to-noise ratio (SNR), ratio of power, and cross-correlation with respect to the clean sequences. The percent of correctly detected R-peaks in denoised sequences was higher than in sequences corrupted with either added noise (70-100% vs. 34-97%) or motion artifacts (91.86% vs. 61.16%). There was notable improvement in SNR values after denoising for signals with noise added (7-19 dB), and when sequences were corrupted with motion artifacts (0.39 dB). The ratio of power for noisy sequences was significantly lower when compared to both clean and denoised sequences. Similarly, cross-correlation between noisy and clean sequences was significantly lower than between denoised and clean sequences. Moreover, we tested our denoising algorithm on 60-s sequences extracted from recordings from the Massachusetts Institute of Technology-Beth Israel Hospital (MIT-BIH) arrhythmia database and obtained improvement in SNR values of 7.08 ± 0.25 dB (mean ± standard deviation (sd)). These results from a diverse set of data suggest that the proposed denoising algorithm improves the quality of the signal and can potentially be applied to most ECG measurement devices.


Assuntos
Monitorização Fisiológica , Processamento de Sinais Assistido por Computador , Dispositivos Eletrônicos Vestíveis , Algoritmos , Artefatos , Eletrocardiografia , Humanos , Masculino , Razão Sinal-Ruído
3.
IEEE J Biomed Health Inform ; 28(6): 3457-3465, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38557616

RESUMO

A novel method for tracking the tidal volume (TV) from electrocardiogram (ECG) is presented. The method is based on the amplitude of ECG-derived respiration (EDR) signals. Three different morphology-based EDR signals and three different amplitude estimation methods have been studied, leading to a total of 9 amplitude-EDR (AEDR) signals per ECG channel. The potential of these AEDR signals to track the changes in TV was analyzed. These methods do not need a calibration process. In addition, a personalized-calibration approach for TV estimation is proposed, based on a linear model that uses all AEDR signals from a device. All methods have been validated with two different ECG devices: a commercial Holter monitor, and a custom-made wearable armband. The lowest errors for the personalized-calibration methods, compared to a reference TV, were -3.48% [-17.41% / 12.93%] (median [first quartile / third quartile]) for the Holter monitor, and 0.28% [-10.90% / 17.15%] for the armband. On the other hand, medians of correlations to the reference TV were higher than 0.8 for uncalibrated methods, while they were higher than 0.9 for personal-calibrated methods. These results suggest that TV changes can be tracked from ECG using either a conventional (Holter) setup, or our custom-made wearable armband. These results also suggest that the methods are not as reliable in applications that induce small changes in TV, but they can be potentially useful for detecting large changes in TV, such as sleep apnea/hypopnea and/or exacerbations of a chronic respiratory disease.


Assuntos
Eletrocardiografia Ambulatorial , Processamento de Sinais Assistido por Computador , Volume de Ventilação Pulmonar , Dispositivos Eletrônicos Vestíveis , Humanos , Eletrocardiografia Ambulatorial/instrumentação , Eletrocardiografia Ambulatorial/métodos , Volume de Ventilação Pulmonar/fisiologia , Masculino , Adulto , Feminino , Eletrocardiografia/métodos , Eletrocardiografia/instrumentação , Pessoa de Meia-Idade , Adulto Jovem
4.
Pediatr Pulmonol ; 59(1): 111-120, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37850730

RESUMO

BACKGROUND: Obstructive sleep apnea (OSA) is a risk factor for metabolic syndrome (MetS) in adults, but its association in prepubertal children is still questionable due to the relatively limited cardiometabolic data available and the phenotypic heterogeneity. OBJECTIVE: To identify the role of OSA as a potential mediator of MetS in prepubertal children. METHODS: A total of 255 prepubertal children from the Childhood Adenotonsillectomy Trial were included, with standardized measurements taken before OSA treatment and 7 months later. MetS was defined if three or more of the following criteria were present: adiposity, high blood pressure, elevated glycemia, and dyslipidemia. A causal mediation analysis was conducted to assess the effect of OSA treatment on MetS. RESULTS: OSA treatment significantly impacted MetS, with the apnea-hypopnea index emerging as mediator (p = .02). This mediation role was not detected for any of the individual risk factors that define MetS. We further found that the relationship between MetS and OSA is ascribable to respiratory disturbance caused by the apnea episodes, while systemic inflammation as measured by C-reactive protein, is mediated by desaturation events and fragmented sleep. In terms of evolution, patients with MetS were significantly more likely to recover after OSA treatment (odds ratio = 2.56, 95% confidence interval [CI] 1.20-5.46; risk ratio = 2.06, 95% CI 1.19-3.54) than the opposite, patients without MetS to develop it. CONCLUSION: The findings point to a causal role of OSA in the development of metabolic dysfunction, suggesting that persistent OSA may increase the risk of MetS in prepubertal children. This mediation role implies a need for developing screening for MetS in children presenting OSA symptoms.


Assuntos
Síndrome Metabólica , Síndromes da Apneia do Sono , Apneia Obstrutiva do Sono , Adulto , Criança , Humanos , Síndrome Metabólica/complicações , Síndrome Metabólica/epidemiologia , Síndromes da Apneia do Sono/diagnóstico , Apneia Obstrutiva do Sono/complicações , Apneia Obstrutiva do Sono/epidemiologia , Apneia Obstrutiva do Sono/diagnóstico , Fatores de Risco , Obesidade/complicações
5.
Artigo em Inglês | MEDLINE | ID: mdl-37948138

RESUMO

Obstructive sleep apnea (OSA) is a high-prevalence disease in the general population, often underdiagnosed. The gold standard in clinical practice for its diagnosis and severity assessment is the polysomnography, although in-home approaches have been proposed in recent years to overcome its limitations. Today's ubiquitously presence of wearables may become a powerful screening tool in the general population and pulse-oximetry-based techniques could be used for early OSA diagnosis. In this work, the peripheral oxygen saturation together with the pulse-to-pulse interval (PPI) series derived from photoplethysmography (PPG) are used as inputs for OSA diagnosis. Different models are trained to classify between normal and abnormal breathing segments (binary decision), and between normal, apneic and hypopneic segments (multiclass decision). The models obtained 86.27% and 73.07% accuracy for the binary and multiclass segment classification, respectively. A novel index, the cyclic variation of the heart rate index (CVHRI), derived from PPI's spectrum, is computed on the segments containing disturbed breathing, representing the frequency of the events. CVHRI showed strong Pearson's correlation (r) with the apnea-hypopnea index (AHI) both after binary (r=0.94, p 0.001) and multiclass (r=0.91, p 0.001) segment classification. In addition, CVHRI has been used to stratify subjects with AHI higher/lower than a threshold of 5 and 15, resulting in 77.27% and 79.55% accuracy, respectively. In conclusion, patient stratification based on the combination of oxygen saturation and PPI analysis, with the addition of CVHRI, is a suitable, wearable friendly and low-cost tool for OSA screening at home.

6.
Comput Biol Med ; 154: 106549, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36706566

RESUMO

Heart rate variability (HRV) is modulated by sleep stages and apneic events. Previous studies in children compared classical HRV parameters during sleep stages between obstructive sleep apnea (OSA) and controls. However, HRV-based characterization incorporating both sleep stages and apneic events has not been conducted. Furthermore, recently proposed novel HRV OSA-specific parameters have not been evaluated. Therefore, the aim of this study was to characterize and compare classic and pediatric OSA-specific HRV parameters while including both sleep stages and apneic events. A total of 1610 electrocardiograms from the Childhood Adenotonsillectomy Trial (CHAT) database were split into 10-min segments to extract HRV parameters. Segments were characterized and grouped by sleep stage (wake, W; non-rapid eye movement, NREMS; and REMS) and presence of apneic events (under 1 apneic event per segment, e/s; 1-5 e/s; 5-10 e/s; and over 10 e/s). NREMS showed significant changes in HRV parameters as apneic event frequency increased, which were less marked in REMS. In both NREMS and REMS, power in BW2, a pediatric OSA-specific frequency domain, allowed for the optimal differentiation among segments. Moreover, in the absence of apneic events, another defined band, BWRes, resulted in best differentiation between sleep stages. The clinical usefulness of segment-based HRV characterization was then confirmed by two ensemble-learning models aimed at estimating apnea-hypopnea index and classifying sleep stages, respectively. We surmise that basal sympathetic activity during REMS may mask apneic events-induced sympathetic excitation, thus highlighting the importance of incorporating sleep stages as well as apneic events when evaluating HRV in pediatric OSA.


Assuntos
Síndromes da Apneia do Sono , Apneia Obstrutiva do Sono , Humanos , Criança , Frequência Cardíaca/fisiologia , Polissonografia , Fases do Sono/fisiologia
7.
Physiol Meas ; 44(11)2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-37494945

RESUMO

Photoplethysmography is a key sensing technology which is used in wearable devices such as smartwatches and fitness trackers. Currently, photoplethysmography sensors are used to monitor physiological parameters including heart rate and heart rhythm, and to track activities like sleep and exercise. Yet, wearable photoplethysmography has potential to provide much more information on health and wellbeing, which could inform clinical decision making. This Roadmap outlines directions for research and development to realise the full potential of wearable photoplethysmography. Experts discuss key topics within the areas of sensor design, signal processing, clinical applications, and research directions. Their perspectives provide valuable guidance to researchers developing wearable photoplethysmography technology.


Assuntos
Fotopletismografia , Dispositivos Eletrônicos Vestíveis , Monitores de Aptidão Física , Processamento de Sinais Assistido por Computador , Frequência Cardíaca/fisiologia
8.
IEEE J Biomed Health Inform ; 26(2): 539-549, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34310329

RESUMO

The main aim of this work is to study the effect of the sampling rate of the photoplethysmographic (PPG) signal for pulse rate variability (PRV) analysis. Forehead and finger PPG signals were recorded at 1000 Hz during a rest state, with red and infrared wavelengths, simultaneously with the electrocardiogram (ECG). The PPG sampling rate has been reduced by decimation, obtaining signals at 500 Hz, 250 Hz, 125 Hz, 100 Hz, 50 Hz and 25 Hz. Five fiducial points were computed: apex, up-slope, medium, line-medium and medium interpolate point. The medium point is located in the middle of the up-slope of the pulse. The medium interpolate point is a new proposal as fiducial point that consider the abrupt up-slope of the PPG pulse, so it can be recovered by linear interpolation when the sampling rate is reduced. The error performed in the temporal location of the fiducial points was computed. Pulse period time interval series were obtained from all PPG signals and fiducial points, and compared with the RR intervals obtained from the ECG. Heart rate variability and PRV signals were estimated and classical time and frequency domain indices were computed. The results showed that the medium interpolate point of the PPG pulse was the most accurate fiducial point under different PPG morphologies and sensor locations, when sampling rate was reduced. Being able to reduce the sampling rate to 50 Hz without causing significant changes in time and frequency indices, when medium interpolate point was used as fiducial point.


Assuntos
Fotopletismografia , Processamento de Sinais Assistido por Computador , Eletrocardiografia/métodos , Dedos , Frequência Cardíaca/fisiologia , Humanos , Fotopletismografia/métodos
9.
Organometallics ; 41(14): 1892-1904, 2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35936655

RESUMO

The direct oxidation of benzene into phenol using molecular oxygen at very mild temperatures can be promoted in the presence of the copper complex TpBr3Cu(NCMe) in the homogeneous phase in the presence of ascorbic acid as the source of protons and electrons. The stoichiometric nature, relative to copper, of this transformation prompted a thorough DFT study in order to understand the reaction pathway. As a result, the dinuclear species TpBr3CuII(µ-O•)(µ-OH)CuIITpBr3 is proposed as the relevant structure which is responsible for activating the arene C-H bond leading to phenol formation.

10.
Biosensors (Basel) ; 12(2)2022 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-35200342

RESUMO

OBJECTIVE: We have developed a peak detection algorithm for accurate determination of heart rate, using photoplethysmographic (PPG) signals from a smartwatch, even in the presence of various cardiac rhythms, including normal sinus rhythm (NSR), premature atrial contraction (PAC), premature ventricle contraction (PVC), and atrial fibrillation (AF). Given the clinical need for accurate heart rate estimation in patients with AF, we developed a novel approach that reduces heart rate estimation errors when compared to peak detection algorithms designed for NSR. METHODS: Our peak detection method is composed of a sequential series of algorithms that are combined to discriminate the various arrhythmias described above. Moreover, a novel Poincaré plot scheme is used to discriminate between basal heart rate AF and rapid ventricular response (RVR) AF, and to differentiate PAC/PVC from NSR and AF. Training of the algorithm was performed only with Samsung Simband smartwatch data, whereas independent testing data which had more samples than did the training data were obtained from Samsung's Gear S3 and Galaxy Watch 3. RESULTS: The new PPG peak detection algorithm provides significantly lower average heart rate and interbeat interval beat-to-beat estimation errors-30% and 66% lower-and mean heart rate and mean interbeat interval estimation errors-60% and 77% lower-when compared to the best of the seven other traditional peak detection algorithms that are known to be accurate for NSR. Our new PPG peak detection algorithm was the overall best performers for other arrhythmias. CONCLUSION: The proposed method for PPG peak detection automatically detects and discriminates between various arrhythmias among different waveforms of PPG data, delivers significantly lower heart rate estimation errors for participants with AF, and reduces the number of false negative peaks. SIGNIFICANCE: By enabling accurate determination of heart rate despite the presence of AF with rapid ventricular response or PAC/PVCs, we enable clinicians to make more accurate recommendations for heart rate control from PPG data.


Assuntos
Fibrilação Atrial , Complexos Ventriculares Prematuros , Algoritmos , Fibrilação Atrial/diagnóstico , Eletrocardiografia , Frequência Cardíaca/fisiologia , Humanos , Fotopletismografia/métodos , Complexos Ventriculares Prematuros/diagnóstico
11.
Front Physiol ; 13: 960118, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36699693

RESUMO

The multidimensionality of the stress response has shown the complexity of this phenomenon and therefore the impossibility of finding a unique biomarker among the physiological variables related to stress. An experimental study was designed and performed to guarantee the correct synchronous and concurrent measure of psychometric tests, biochemical variables and physiological features related to acute emotional stress. The population studied corresponds to a group of 120 university students between 20 and 30 years of age, with healthy habits and without a diagnosis of chronic or psychiatric illnesses. Following the protocol of the experimental pilot, each participant reached a relaxing state and a stress state in two sessions of measurement for equivalent periods. Both states are correctly achieved evidenced by the psychometric test results and the biochemical variables. A Stress Reference Scale is proposed based on these two sets of variables. Then, aiming for a non-invasive and continuous approach, the Acute Stress Model correlated to the previous scale is also proposed, supported only by physiological signals. Preliminary results support the feasibility of measuring/quantifying the stress level. Although the results are limited to the population and stimulus type, the procedure and methodological analysis used for the assessment of acute stress in young people can be extrapolated to other populations and types of stress.

12.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 5473-5476, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34892364

RESUMO

The present study investigates the differences in autonomic nervous system (ANS) function and stress response between patients with major depressive disorder (MDD) and healthy subjects by measuring changes in ANS biomarkers. ANS-related parameters are derived from various biosignals during a mental stress protocol consisting of a basal, stress, and recovery phase. The feature set consists of ANS biomarkers such as the heart rate (HR) derived from the electrocardiogram, the respiratory rate derived from the respiration signal, vascular parameters obtained from a model-based photoplethysmographic pulse waveform analysis, and cardiorespiratory coupling indices derived from the joint analysis of the heart rate variability (HRV) and respiratory signals. In particular, linear cardiorespiratory interactions are quantified by means of time-frequency coherence, while interactions of quadratic nonlinear nature between HRV and respiration are quantified by means of real wavelet biphase. The intra-subject difference of a feature value between two phases of the protocol, the so-called autonomic reactivity, is considered as a ANS biomarker as well. The performance of ANS biomarkers on discriminating MDD patients is evaluated using a classification pipeline. The results show that the most discriminative ANS biomarkers are related with differences in HR and autonomic reactivity of both vascular and nonlinear cardiorespiratory coupling indices. Differences in autonomic reactivity imply that MDD and healthy subjects differ in their ability to cope with stress. Considering only HR and vascular characteristics a linear support-vector machine classifier yields to accuracy 72.5% and F1-score 73.2%. However, taking into account the nonlinear cardiorespiratory coupling indices, the classification performance improves, yielding to accuracy 77.5% and F1-score 78.0%.Clinical relevance- Changes in the nonlinear properties of the cardiorespiratory system during stress may yield additional information on the assessment of depression.


Assuntos
Transtorno Depressivo Maior , Sistema Nervoso Autônomo , Depressão , Transtorno Depressivo Maior/diagnóstico , Eletrocardiografia , Frequência Cardíaca , Humanos
13.
Comput Methods Programs Biomed ; 200: 105856, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33309076

RESUMO

BACKGROUND AND OBJECTIVE: Electrocardiogram (ECG) is widely used for the detection and diagnosis of cardiac arrhythmias such as atrial fibrillation. Most of the computer-based automatic cardiac abnormality detection algorithms require accurate identification of ECG components such as QRS complexes in order to provide a reliable result. However, ECGs are often contaminated by noise and artifacts, especially if they are obtained using wearable sensors, therefore, identification of accurate QRS complexes often becomes challenging. Most of the existing denoising methods were validated using simulated noise added to a clean ECG signal and they did not consider authentically noisy ECG signals. Moreover, many of them are model-dependent and sampling-frequency dependent and require a large amount of computational time. METHODS: This paper presents a novel ECG denoising technique using the variable frequency complex demodulation (VFCDM) algorithm, which considers noises from a variety of sources. We used the sub-band decomposition of the noise-contaminated ECG signals using VFCDM to remove the noise components so that better-quality ECGs could be reconstructed. An adaptive automated masking is proposed in order to preserve the QRS complexes while removing the unnecessary noise components. Finally, the ECG was reconstructed using a dynamic reconstruction rule based on automatic identification of the severity of the noise contamination. The ECG signal quality was further improved by removing baseline drift and smoothing via adaptive mean filtering. RESULTS: Evaluation results on the standard MIT-BIH Arrhythmia database suggest that the proposed denoising technique provides superior denoising performance compared to studies in the literature. Moreover, the proposed method was validated using real-life noise sources collected from the noise stress test database (NSTDB) and data from an armband ECG device which contains significant muscle artifacts. Results from both the wearable armband ECG data and NSTDB data suggest that the proposed denoising method provides significantly better performance in terms of accurate QRS complex detection and signal to noise ratio (SNR) improvement when compared to some of the recent existing denoising algorithms. CONCLUSIONS: The detailed qualitative and quantitative analysis demonstrated that the proposed denoising method has been robust in filtering varieties of noises present in the ECG. The QRS detection performance of the denoised armband ECG signals indicates that the proposed denoising method has the potential to increase the amount of usable armband ECG data, thus, the armband device with the proposed denoising method could be used for long term monitoring of atrial fibrillation.


Assuntos
Eletrocardiografia , Processamento de Sinais Assistido por Computador , Algoritmos , Artefatos , Razão Sinal-Ruído
14.
IEEE Trans Biomed Eng ; 68(3): 1056-1065, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32746038

RESUMO

A method for deriving respiratory rate from an armband, which records three-channel electrocardiogram (ECG) using three pairs of dry (no hydrogel) electrodes, is presented. The armband device is especially convenient for long-term (months-years) monitoring because it does not use obstructive leads nor hydrogels/adhesives, which cause skin irritation even after few days. An ECG-derived respiration (EDR) based on respiration-related modulation of QRS slopes and R-wave angle approach was used. Moreover, we modified the EDR algorithm to lower the computational cost. Respiratory rates were estimated with the armband-ECG and the reference plethysmography-based respiration signals from 15 subjects who underwent breathing experiment consisting of five stages of controlled breathing (at 0.1, 0.2, 0.3, 0.4, and 0.5 Hz) and one stage of spontaneous breathing. The respiratory rates from the armband obtained a relative error with respect to the reference (respiratory rate estimated from the plethysmography-based respiration signal) that was not higher than 2.26% in median nor interquartile range (IQR) for all stages of fixed and spontaneous breathing, and not higher than 3.57% in median nor IQR in the case when the low computational cost algorithm was applied. These results demonstrate that respiration-related modulation of the ECG morphology are also present in the armband ECG device. Furthermore, these results suggest that respiration-related modulation can be exploited by the EDR method based on QRS slopes and R-wave angles to obtain respiratory rate, which may have a wide range of applications including monitoring patients with chronic respiratory diseases, epileptic seizures detection, stress assessment, and sleep studies, among others.


Assuntos
Taxa Respiratória , Dispositivos Eletrônicos Vestíveis , Algoritmos , Eletrocardiografia , Humanos , Respiração , Processamento de Sinais Assistido por Computador
15.
IEEE Trans Biomed Eng ; 68(4): 1273-1281, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32960759

RESUMO

OBJECTIVE: In the present study, a photoplethysmographic (PPG) waveform analysis for assessing differences in autonomic reactivity to mental stress between patients with Major Depressive Disorder (MDD) and healthy control (HC) subjects is presented. METHODS: PPG recordings of 40 MDD and 40 HC subjects were acquired at basal conditions, during the execution of cognitive tasks, and at the post-task relaxation period. PPG pulses are decomposed into three waves (a main wave and two reflected waves) using a pulse decomposition analysis. Pulse waveform characteristics such as the time delay between the position of the main wave and reflected waves, the percentage of amplitude loss in the reflected waves, and the heart rate (HR) are calculated among others. The intra-subject difference of a feature value between two conditions is used as an index of autonomic reactivity. RESULTS: Statistically significant individual differences from stress to recovery were found for HR and the percentage of amplitude loss in the second reflected wave ( A13) in both HC and MDD group. However, autonomic reactivity indices related to  A13 reached higher values in HC than in MDD subjects (Cohen's [Formula: see text]), implying that the stress response in depressed patients is reduced. A statistically significant ( ) negative correlation ( r=-0.5) between depression severity scores and A13 was found. CONCLUSION: A decreased autonomic reactivity is associated with higher degree of depression. SIGNIFICANCE: Stress response quantification by dynamic changes in PPG waveform morphology can be an aid for the diagnosis and monitoring of depression.


Assuntos
Transtorno Depressivo Maior , Sistema Nervoso Autônomo , Depressão , Transtorno Depressivo Maior/diagnóstico , Frequência Cardíaca , Humanos , Fotopletismografia
16.
Cardiovasc Digit Health J ; 2(3): 179-191, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35265907

RESUMO

Background: Atrial fibrillation (AF) is the world's most common heart rhythm disorder and even several minutes of AF episodes can contribute to risk for complications, including stroke. However, AF often goes undiagnosed owing to the fact that it can be paroxysmal, brief, and asymptomatic. Objective: To facilitate better AF monitoring, we studied the feasibility of AF detection using a continuous electrocardiogram (ECG) signal recorded from a novel wearable armband device. Methods: In our 2-step algorithm, we first calculate the R-R interval variability-based features to capture randomness that can indicate a segment of data possibly containing AF, and subsequently discriminate normal sinus rhythm from the possible AF episodes. Next, we use density Poincaré plot-derived image domain features along with a support vector machine to separate premature atrial/ventricular contraction episodes from any AF episodes. We trained and validated our model using the ECG data obtained from a subset of the MIMIC-III (Medical Information Mart for Intensive Care III) database containing 30 subjects. Results: When we tested our model using the novel wearable armband ECG dataset containing 12 subjects, the proposed method achieved sensitivity, specificity, accuracy, and F1 score of 99.89%, 99.99%, 99.98%, and 0.9989, respectively. Moreover, when compared with several existing methods with the armband data, our proposed method outperformed the others, which shows its efficacy. Conclusion: Our study suggests that the novel wearable armband device and our algorithm can be used as a potential tool for continuous AF monitoring with high accuracy.

17.
Sci Rep ; 11(1): 16014, 2021 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-34362950

RESUMO

The ideal moment to withdraw respiratory supply of patients under Mechanical Ventilation at Intensive Care Units (ICU), is not easy to be determined for clinicians. Although the Spontaneous Breathing Trial (SBT) provides a measure of the patients' readiness, there is still around 15-20% of predictive failure rate. This work is a proof of concept focused on adding new value to the prediction of the weaning outcome. Heart Rate Variability (HRV) and Cardiopulmonary Coupling (CPC) methods are evaluated as new complementary estimates to assess weaning readiness. The CPC is related to how the mechanisms regulating respiration and cardiac pumping are working simultaneously, and it is defined from HRV in combination with respiratory information. Three different techniques are used to estimate the CPC, including Time-Frequency Coherence, Dynamic Mutual Information and Orthogonal Subspace Projections. The cohort study includes 22 patients in pressure support ventilation, ready to undergo the SBT, analysed in the 24 h previous to the SBT. Of these, 13 had a successful weaning and 9 failed the SBT or needed reintubation -being both considered as failed weaning. Results illustrate that traditional variables such as heart rate, respiratory frequency, and the parameters derived from HRV do not differ in patients with successful or failed weaning. Results revealed that HRV parameters can vary considerably depending on the time at which they are measured. This fact could be attributed to circadian rhythms, having a strong influence on HRV values. On the contrary, significant statistical differences are found in the proposed CPC parameters when comparing the values of the two groups, and throughout the whole recordings. In addition, differences are greater at night, probably because patients with failed weaning might be experiencing more respiratory episodes, e.g. apneas during the night, which is directly related to a reduced respiratory sinus arrhythmia. Therefore, results suggest that the traditional measures could be used in combination with the proposed CPC biomarkers to improve weaning readiness.


Assuntos
Frequência Cardíaca , Unidades de Terapia Intensiva/estatística & dados numéricos , Respiração Artificial/métodos , Respiração , Desmame do Respirador/métodos , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos
18.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 592-595, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-33018058

RESUMO

We propose a novel electrocardiogram (ECG) denoising technique using the variable frequency complex demodulation (VFCDM) algorithm. We used VFCDM to perform the sub-band decomposition of the noise-contaminated ECG to remove the noise components so that accurate QRS complexes could be identified. The ECG quality was further improved by removing baseline drift and smoothing via adaptive mean filtering. The proposed method was validated on the MIT-BIH arrhythmia database (MITDB) and wearable armband ECG data. For the former, we added Gaussian white noise to the ECG signals at different signal-to-noise ratios and the denoising performance of the proposed method was compared with other denoising techniques. The proposed approach showed superior denoising performance compared to the other methods. We compared the QRS complex detection performance of the noisy to the denoised armband ECG. The performance of the proposed denoising method on the armband ECG resulted in comparable QRS complex detection as that obtained when using Holter monitor ECG signals. This demonstrates that the proposed algorithm can significantly increase the amount of usable armband ECG data, which would otherwise have been discarded due to electromyogram contamination especially during arm movements. Hence, the proposed algorithm has the potential to enable long-term monitoring of atrial fibrillation using the armband without the discomfort of skin irritation often experienced with Holter monitors.Clinical Relevance- The proposed ECG denoising method can significantly increase the ECG quality of wearable ECG devices, which are more susceptible to muscle and motion artifacts.


Assuntos
Processamento de Sinais Assistido por Computador , Dispositivos Eletrônicos Vestíveis , Algoritmos , Eletrocardiografia , Humanos , Razão Sinal-Ruído
19.
IEEE Trans Biomed Eng ; 67(12): 3464-3473, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32305891

RESUMO

A wearable armband electrocardiogram (ECG) monitor has been used for daily life monitoring. The armband records three ECG channels, one electromyogram (EMG) channel, and tri-axial accelerometer signals. Contrary to conventional Holter monitors, the armband-based ECG device is convenient for long-term daily life monitoring because it uses no obstructive leads and has dry electrodes (no hydrogels), which do not cause skin irritation even after a few days. Principal component analysis (PCA) and normalized least mean squares (NLMS) adaptive filtering were used to reduce the EMG noise from the ECG channels. An artifact detector and an optimal channel selector were developed based on a support vector machine (SVM) classifier with a radial basis function (RBF) kernel using features that are related to the ECG signal quality. Mean HR was estimated from the 24-hour armband recordings from 16 volunteers in segments of 10 seconds each. In addition, four classical HR variability (HRV) parameters (SDNN, RMSSD, and powers at low and high frequency bands) were computed. For comparison purposes, the same parameters were estimated also for data from a commercial Holter monitor. The armband provided usable data (difference less than 10% from Holter-estimated mean HR) during 75.25%/11.02% (inter-subject median/interquartile range) of segments when the user was not in bed, and during 98.49%/0.79% of the bed segments. The automatic artifact detector found 53.85%/17.09% of the data to be usable during the non-bed time, and 95.00%/2.35% to be usable during the time in bed. The HRV analysis obtained a relative error with respect to the Holter data not higher than 1.37% (inter-subject median/interquartile range). Although further studies have to be conducted for specific applications, results suggest that the armband device has a good potential for daily life HR monitoring, especially for applications such as arrhythmia or seizure detection, stress assessment, or sleep studies.


Assuntos
Eletrocardiografia , Dispositivos Eletrônicos Vestíveis , Artefatos , Eletrocardiografia Ambulatorial , Eletrodos , Frequência Cardíaca , Humanos
20.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 596-599, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-33018059

RESUMO

A pilot study on tracking changes in tidal volume (TV) using ECG signals acquired by a wearable armband is presented. The wearable armband provides three ECG channels by using three pairs of dry electrodes, resulting in a device that is convenient for long-term daily monitoring. An additional ECG channel was derived by computing the first principal component of the three original channels (by means of principal component analysis). Armband and spirometer signals were simultaneously recorded from five healthy subjects who were instructed to breathe with varying TV. Three electrocardiogram derived respiration (EDR) methods based on QRS complex morphology were studied: the QRS slopes range (SR), the R-wave angle (Փ), and the R-S amplitude (RS). The peak-to-peak amplitudes of these EDR signals were estimated as surrogates for TV, and their correlations with the reference TV (estimated from the spirometer signal) were computed. In addition, a multiple linear regression model was calculated for each subject, using the peak-to-peak amplitudes from the three EDR methods from the four ECG channels. Obtained correlations between TV and EDR peak-to-peak amplitude ranged from 0.0448 up to 0.8491. For every subject, a moderate correlation (>0.5) was obtained for at least one EDR method. Furthermore, the correlations obtained for the subject-specific multiple linear regression model ranged from 0.8234 up to 0.9154, and the goodness of fit was 0.73±0.07 (median ± standard deviation). These results suggest that the peak-to-peak amplitudes of the EDR methods are linearly related to the TV. opening the possibility of estimating TV directly from an armband ECG device.Clinical Relevance- This opens the door to possible continuous monitoring of TV from the armband by using EDR.


Assuntos
Processamento de Sinais Assistido por Computador , Dispositivos Eletrônicos Vestíveis , Eletrocardiografia , Humanos , Projetos Piloto , Volume de Ventilação Pulmonar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA