RESUMO
Adverse childhood experiences (ACEs) are often associated with higher rates of mental health issues and problematic behaviors within the U.S. college population. Therefore, the primary purpose of this study was to investigate the current associations among ACEs, six psychosocial risk factors for poor health (i.e., anxiety, depression, loneliness, negative urgency, positive urgency, and stress), and significant behavioral and substance problems in a large sample of college students (N = 1,993). Overall, 72.3% of participants reported one or more ACEs, with 21.7% reporting at least five of these experiences; the most prevalent ACE types were emotional abuse (51.7%) and parental mental illness (33.8%). Cumulative ACEs were positively associated with all health risk factors, rs = .07-.38, ps ≤ .001, and these ACE scores were most connected to student problems with alcohol, overeating, and sex, rs = .19-.22, ps < .001. Furthermore, using logistic regression, cumulative ACEs predicted which students were more likely to report behavioral problems, OR = 1.08, 95% CI [1.03, 1.14]; substance problems, OR = 1.16, 95% CI [1.07, 1.26]; and both types of problems, OR = 1.28, 95% CI [1.20, 1.36], relative to students without these problems. Aside from ACEs, higher anxiety was the only other risk factor all three problem types shared. Collectively, these findings highlight the differential impact of ACEs and other psychosocial risk factors on the susceptibility of college students to particular forms of maladaptive coping and suggest potential targets for intervention and prevention efforts in these areas.
RESUMO
The threat to public health posed by drug-resistant bacteria is rapidly increasing, as some of healthcare's most potent antibiotics are becoming obsolete. Approximately two-thirds of the world's antibiotics are derived from natural products produced by Streptomyces encoded biosynthetic gene clusters. Thus, to identify novel gene clusters, we sequenced the genomes of four bioactive Streptomyces strains isolated from the soil in San Diego County and used Bacterial Cytological Profiling adapted for agar plate culturing in order to examine the mechanisms of bacterial inhibition exhibited by these strains. In the four strains, we identified 104 biosynthetic gene clusters. Some of these clusters were predicted to produce previously studied antibiotics; however, the known mechanisms of these molecules could not fully account for the antibacterial activity exhibited by the strains, suggesting that novel clusters might encode antibiotics. When assessed for their ability to inhibit the growth of clinically isolated pathogens, three Streptomyces strains demonstrated activity against methicillin-resistant Staphylococcus aureus. Additionally, due to the utility of bacteriophages for genetically manipulating bacterial strains via transduction, we also isolated four new phages (BartholomewSD, IceWarrior, Shawty, and TrvxScott) against S. platensis. A genomic analysis of our phages revealed nearly 200 uncharacterized proteins, including a new site-specific serine integrase that could prove to be a useful genetic tool. Sequence analysis of the Streptomyces strains identified CRISPR-Cas systems and specific spacer sequences that allowed us to predict phage host ranges. Ultimately, this study identified Streptomyces strains with the potential to produce novel chemical matter as well as integrase-encoding phages that could potentially be used to manipulate these strains.