Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
SLAS Technol ; 25(1): 33-46, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31766939

RESUMO

Simultaneous measurements of glucose, lactate, and neurotransmitters (e.g., glutamate) in cell culture over hours and days can provide a more dynamic and longitudinal perspective on ways neural cells respond to various drugs and environmental cues. Compared with conventional microfabrication techniques, direct writing of conductive ink is cheaper, faster, and customizable, which allows rapid iteration for different applications. Using a simple direct writing technique, we printed biosensor arrays onto cell culture dishes, flexible laminate, and glass to enable multianalyte monitoring. The ink was a composite of PEDOT:PSS conductive polymer, silicone, activated carbon, and Pt microparticles. We applied 0.5% Nafion to the biosensors for selectivity and functionalized them with oxidase enzymes. We characterized biosensors in phosphate-buffered saline and in cell culture medium supplemented with fetal bovine serum. The biosensor arrays measured glucose, lactate, and glutamate simultaneously and continued to function after incubation in cell culture at 37 °C for up to 2 days. We cultured primary human astrocytes on top of the biosensor arrays and placed arrays into astrocyte cultures. The biosensors simultaneously measured glucose, glutamate, and lactate from astrocyte cultures. Direct writing can be integrated with microfluidic organ-on-a-chip platforms or as part of a smart culture dish system. Because we print extrudable and flexible components, sensing elements can be printed on any 3D or flexible substrate.


Assuntos
Astrócitos/química , Técnicas Biossensoriais/instrumentação , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas de Cultura de Células/instrumentação , Células Cultivadas , Glucose/análise , Ácido Glutâmico/análise , Humanos , Tinta , Ácido Láctico/análise , Reologia
2.
ACS Biomater Sci Eng ; 6(9): 5315-5325, 2020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-33455280

RESUMO

Nonenzymatic glucose biosensors have the potential for a more reliable in vivo functionality due to the reduced risk of biorecognition element degradation. However, these novel sensing mechanisms often are nanoparticle-based and have nonlinear responses, which makes it difficult to gauge their potential utility against more conventional enzymatic biosensors. Moreover, these nonenzymatic biosensors often suffer from poor selectivity that needs to be better addressed before being used in vivo. To address these problems, here we present an amperometric nonenzymatic glucose biosensor fabricated using one-step electrodeposition of Au and Ru nanoparticles on the surface of a carbon-nanotube-based platinum-nanoparticle hybrid in conductive polymer. Using benchtop evaluations, we demonstrate that the bimetallic catalyst of Au-Ru nanoparticles can enable the nonenzymatic detection of glucose with a superior performance and stability. Furthermore, our biosensor shows good selectivity against other interferents, with a nonlinear dynamic range of 1-19 mM glucose. The Au-Ru catalyst has a conventional linear range of 1-10 mM, with a sensitivity of 0.2347 nA/(µM mm2) ± 0.0198 (n = 3) and a limit of detection of 0.068 mM (signal-to-noise, S/N = 3). The biosensor also exhibits a good repeatability and stability at 37 °C over a 3 week incubation period. Finally, we use a modified Butler-Volmer nonlinear analytical model to evaluate the impact of geometrical and chemical design parameters on our nonenzymatic biosensor's performance, which may be used to help optimize the performance of this class of biosensors.


Assuntos
Técnicas Biossensoriais , Nanocompostos , Nanotubos de Carbono , Técnicas Eletroquímicas , Glucose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA