Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Brief Bioinform ; 22(3)2021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32613242

RESUMO

Protein S-sulfenylation is one kind of crucial post-translational modifications (PTMs) in which the hydroxyl group covalently binds to the thiol of cysteine. Some recent studies have shown that this modification plays an important role in signaling transduction, transcriptional regulation and apoptosis. To date, the dynamic of sulfenic acids in proteins remains unclear because of its fleeting nature. Identifying S-sulfenylation sites, therefore, could be the key to decipher its mysterious structures and functions, which are important in cell biology and diseases. However, due to the lack of effective methods, scientists in this field tend to be limited in merely a handful of some wet lab techniques that are time-consuming and not cost-effective. Thus, this motivated us to develop an in silico model for detecting S-sulfenylation sites only from protein sequence information. In this study, protein sequences served as natural language sentences comprising biological subwords. The deep neural network was consequentially employed to perform classification. The performance statistics within the independent dataset including sensitivity, specificity, accuracy, Matthews correlation coefficient and area under the curve rates achieved 85.71%, 69.47%, 77.09%, 0.5554 and 0.833, respectively. Our results suggested that the proposed method (fastSulf-DNN) achieved excellent performance in predicting S-sulfenylation sites compared to other well-known tools on a benchmark dataset.


Assuntos
Bases de Dados de Proteínas , Redes Neurais de Computação , Processamento de Proteína Pós-Traducional , Análise de Sequência de Proteína , Ácidos Sulfênicos , Ácidos Sulfênicos/química , Ácidos Sulfênicos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA