Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 28(3)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36770629

RESUMO

Five different chitosan samples (CHI-1 to CHI-5) from crustacean shells with high deacetylation degrees (>93%) have been deeply characterized from a chemical and physicochemical point of view in order to better understand the impact of some parameters on the bioactivity against two pathogens frequently encountered in vineyards, Plasmopara viticola and Botrytis cinerea. All the samples were analyzed by SEC-MALS, 1H-NMR, elemental analysis, XPS, FTIR, mass spectrometry, pyrolysis, and TGA and their antioxidant activities were measured (DPPH method). Molecular weights were in the order: CHI-4 and CHI-5 (MW >50 kDa) > CHI-3 > CHI-2 and CHI-1 (MW < 20 kDa). CHI-1, CHI-2 and CHI-3 are under their hydrochloride form, CHI-4 and CHI-5 are under their NH2 form, and CHI-3 contains a high amount of a chitosan calcium complex. CHI-2 and CHI-3 showed higher scavenging activity than others. The bioactivity against B. cinerea was molecular weight dependent with an IC50 for CHI-1 = CHI-2 (13 mg/L) ≤ CHI-3 (17 mg/L) < CHI-4 (75 mg/L) < CHI-5 (152 mg/L). The bioactivity on P. viticola zoospores was important, even at a very low concentration for all chitosans (no moving spores between 1 and 0.01 g/L). These results show that even at low concentrations and under hydrochloride form, chitosan could be a good alternative to pesticides.


Assuntos
Quitosana , Oomicetos , Antifúngicos/farmacologia , Antifúngicos/química , Quitosana/farmacologia , Quitosana/química , Antioxidantes/farmacologia , Antioxidantes/química , Peso Molecular
2.
Artigo em Inglês | MEDLINE | ID: mdl-39041490

RESUMO

Methods for promoting and controlling the differentiation of human mesenchymal stem cells (hMSCs) in vitro before in vivo transplantation are crucial for the advancement of tissue engineering and regenerative medicine. In this study, we developed poly(ethylene glycol) diacrylate (PEGDA) hydrogels with tunable mechanical properties, including elasticity and viscoelasticity, coupled with bioactivity achieved through the immobilization of a mixture of RGD and a mimetic peptide of the BMP-2 protein. Despite the key relevance of hydrogel mechanical properties for cell culture, a standard for its characterization has not been proposed, and comparisons between studies are challenging due to the different techniques employed. Here, a comprehensive approach was employed to characterize the elasticity and viscoelasticity of these hydrogels, integrating compression testing, rheology, and atomic force microscopy (AFM) microindentation. Distinct mechanical behaviors were observed across different PEGDA compositions, and some consistent trends across multiple techniques were identified. Using a photoactivated cross-linker, we controlled the functionalization density independently of the mechanical properties. X-ray photoelectrin spectroscopy and fluorescence microscopy were employed to evaluate the functionalization density of the materials before the culturing of hMSCs on them. The cells cultured on all functionalized hydrogels expressed an early osteoblast marker (Runx2) after 2 weeks, even in the absence of a differentiation-inducing medium compared to our controls. Additionally, after only 1 week of culture with osteogenic differentiation medium, cells showed accelerated differentiation, with clear morphological differences observed among cells in the different conditions. Notably, cells on stiff but stress-relaxing hydrogels exhibited an overexpression of the osteocyte marker E11. This suggests that the combination of the functionalization procedure with the mechanical properties of the hydrogel provides a potent approach to promoting the osteogenic differentiation of hMSCs.

3.
Front Chem ; 7: 606, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31555641

RESUMO

Bio-based aromatic diamines from vanillin substrate were successfully synthesized and characterized. These amines, i.e., methylated divanillylamine (MDVA) and 3,4-dimethoxydianiline (DMAN), were then tested as curing agents for the design of bio-based epoxy thermosets. The epoxy thermosets obtained from these novel vanillin-based amines exhibited promising thermomechanical properties in terms of glass transition temperature and char residue.

4.
ACS Appl Mater Interfaces ; 8(41): 28030-28039, 2016 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-27673743

RESUMO

This work investigates the possibility of using cellulose nanocrystals (CNCs) as biobased nanoadditives in protective polydimethylsiloxane (PDMS) space coatings, to improve the thermal and optical performances of the material. CNCs produced from wood pulp were functionalized in different conditions with the objective to improve their dispersibility in the PDMS matrix, increase their thermal stability and provide photoactive functions. Polysiloxane, cinnamate, chloroacetate and trifluoroacetate moieties were accordingly anchored at the CNCs surface by silylation, using two different approaches, or acylation with different functional vinyl esters. The modified CNCs were thoroughly characterized by FT-IR spectroscopy, solid-state NMR spectroscopy and thermogravimetric analysis, before being incorporated into a PDMS space coating formulation in low concentration (0.5 to 4 wt %). The cross-linked PDMS films were subsequently investigated with regards to their mechanical behavior, thermal stability and optical properties after photoaging. Results revealed that the CNC additives could significantly improve the thermal stability of the PDMS coating, up to 140 °C, depending on the treatment and CNC concentration, without affecting the mechanical properties and transparency of the material. In addition, the PDMS films loaded with as low as 1 wt % halogenated nanoparticles, exhibited an improved UV-stability after irradiation in geostationary conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA