Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
ACS Omega ; 5(36): 22816-22826, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32954130

RESUMO

In the current context, the development of bio-based and high-performance materials is one of the main research priorities. This study aims to combine the outstanding properties of cellulose nanofibrils (CNFs) or nanocrystals (CNCs) with those of bio-based poly(lactic acid) (PLA). Three-phase multilayered materials (TMLs) were built up by complexing a dry CNF- or CNC-based film with two PLA sheets, using a heat-pressing process. Before the preparation of the nanocellulosic films, CNFs and CNCs were modified by the adsorption of a rosin-based nanoemulsion. The rosin mixture as a natural compound is of interest because of its low cost, renewability, hydrophobicity, and its antimicrobial and antioxidant properties. After demonstrating the efficiency of the complexing procedure, we investigated the barrier properties of the multilayered materials against both oxygen and water vapor, with highly encouraging results. In fact, the presence of nanocellulose as an inner layer between the two PLA films significantly enhanced the oxygen barrier, with a decrease in oxygen permeability comprised between 84 and 96% and between 44 and 50% for neat nanocelluloses and nanocelluloses with rosins as the inner layer, respectively. On the other hand, the antioxidant properties of the final multilayered materials including rosins were highlighted, with a highly encouraging radical scavenging activity close to 20%. Because of the simplicity and the efficiency of the proposed method, this study paves the way toward the development of hybrid multimaterials that could be highly attractive for food packaging applications.

2.
Carbohydr Polym ; 234: 115899, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32070519

RESUMO

Cellulose nanocrystals (CNCs) are used to design nanocomposites because of their high aspect ratio and their outstanding mechanical and barrier properties. However, the low compatibility of hydrophilic CNCs with hydrophobic polymers remains a barrier to their use in the nanocomposite field. To improve this compatibility, poly(glycidyl methacrylate) (PGMA) was grafted from CNCs containing α-bromoisobutyryl moieties via surface-initiated atom transfer radical polymerization. The novelty of this research is the use of a reactive epoxy-containing monomer that can serve as a new platform for further modifications or crosslinking. Polymer-grafted CNC-PGMA-Br prepared at different polymerization times were characterized by XRD, DLS, FTIR, XPS and elemental analysis. Approximately 40 % of the polymer at the surface of the CNCs was quantified after only 1 h of polymerization. Finally, nanocomposites prepared with 10 wt% CNC-PGMA-Br as nanofillers in a poly(lactic acid) (PLA) matrix exhibited an improvement in their compatibilization based on SEM observation.


Assuntos
Celulose/química , Compostos de Epóxi/síntese química , Metacrilatos/síntese química , Nanocompostos/química , Nanopartículas/química , Poliésteres/química , Compostos de Epóxi/química , Metacrilatos/química , Tamanho da Partícula , Polimerização , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA