Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Angew Chem Int Ed Engl ; : e202409343, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39012328

RESUMO

We present here the most active synthetic Ni superoxide dismutase (NiSOD) mimic reported to date. Reactive oxygen species are aggressive compounds, which concentrations are tightly regulated in vivo. Among them, the superoxide anion, O2⸱-, is controlled by superoxide dismutases. Capitalizing on the versatility of the Amino-Terminal CuII- and NiII-binding (ATCUN) peptide motif, we introduced positive charges around the NiII center to favor the interaction with the superoxide radical anion. At physiological pH, the pentapeptide H-Cys-His-Cys-Arg-Arg-NH2 coordinates NiII after the deprotonation of one thiol, two amides, and either the second thiol or the N-terminal ammonium, leading to an equilibrium between the two N3S1 and N2S2 coordination modes. Under catalytic conditions, a kcat value of 8.6(4) x 106 L.mol-1.s-1 was measured. Within the first second, the catalyst remained undegraded with quantitative consumption of O2⸱- (completed up to 37 catalytic cycles). An extra arginine (Arg) was introduced at the peptide C-terminus to increase the global charge of the NiII complex from +1 to + 2. This had no effect on the catalytic performance, highlighting the critical role of charge distribution in space as a determining factor influencing the reactivity.

2.
Chemistry ; 29(47): e202301351, 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37310888

RESUMO

The immobilization of copper-containing nitrite reductase (NiR) from Alcaligenes faecalis on functionalised multi-walled carbon nanotube (MWCNT) electrodes is reported. It is demonstrated that this immobilization is mainly driven by hydrophobic interactions, promoted by the modification of MWCNTs with adamantyl groups. Direct electrochemistry shows high bioelectrochemical reduction of nitrite at the redox potential of NiR with high current density of 1.41 mA cm-2 . Furthermore, the desymmetrization of the trimer upon immobilization induces an independent electrocatalytic behavior for each of the three enzyme subunits, corroborated by an electron-tunneling distance dependence.

3.
Inorg Chem ; 62(23): 8747-8760, 2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37247425

RESUMO

The cellular level of reactive oxygen species (ROS) has to be controlled to avoid some pathologies, especially those linked to oxidative stress. One strategy for designing antioxidants consists of modeling natural enzymes involved in ROS degradation. Among them, nickel superoxide dismutase (NiSOD) catalyzes the dismutation of the superoxide radical anion, O2•-, into O2 and H2O2. We report here Ni complexes with tripeptides derived from the amino-terminal CuII- and NiII-binding (ATCUN) motif that mimics some structural features found in the active site of the NiSOD. A series of six mononuclear NiII complexes were investigated in water at physiological pH with different first coordination spheres, from compounds with a N3S to N2S2 set, and also complexes that are in equilibrium between the N-coordination (N3S) and S-coordination (N2S2). They were fully characterized by a combination of spectroscopic techniques, including 1H NMR, UV-vis, circular dichroism, and X-ray absorption spectroscopy, together with theoretical calculations and their redox properties studied by cyclic voltammetry. They all display SOD-like activity, with a kcat ranging between 0.5 and 2.0 × 106 M-1 s-1. The complexes in which the two coordination modes are in equilibrium are the most efficient, suggesting a beneficial effect of a nearby proton relay.


Assuntos
Peróxido de Hidrogênio , Superóxido Dismutase , Espécies Reativas de Oxigênio , Peróxido de Hidrogênio/química , Superóxido Dismutase/química , Oxirredução , Superóxidos/química , Níquel/química
4.
Angew Chem Int Ed Engl ; 62(22): e202219176, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-36786366

RESUMO

This work showcases the performance of [NiFeSe] hydrogenase from Desulfomicrobium baculatum for solar-driven hydrogen generation in a variety of organic-based deep eutectic solvents. Despite its well-known sensitivity towards air and organic solvents, the hydrogenase shows remarkable performance under an aerobic atmosphere in these solvents when paired with a TiO2 photocatalyst. Tuning the water content further increases hydrogen evolution activity to a TOF of 60±3 s-1 and quantum yield to 2.3±0.4 % under aerobic conditions, compared to a TOF of 4 s-1 in a purely aqueous solvent. Contrary to common belief, this work therefore demonstrates that placing natural hydrogenases into non-natural environments can enhance their intrinsic activity beyond their natural performance, paving the way for full water splitting using hydrogenases.


Assuntos
Hidrogenase , Solventes , Hidrogênio , Luz Solar , Água
5.
Analyst ; 147(5): 897-904, 2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35142302

RESUMO

We investigated the use of POXA1b laccase from Pleurotus ostreatus for the oxidation of anthracene into anthraquinone. We show that different pathways can occur depending on the nature of the redox mediator combined to laccase, leading to different structural isomers. The laccase combined with 2,2'-azine-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) leads to the formation of 1,4-anthraquinone and/or 1,2-anthraquinone. The unprecedented role of carbon nanotubes (CNTs) as redox mediators for oxidation of anthracene into 9,10-anthraquinone is shown and corroborated by density-functional theory (DFT) calculations. Owing to the efficient adsorption of anthraquinones at CNT electrodes, anthracene can be detected with low limit-of-detection using either laccase in solution, CNT-supported laccase or laccase immobilized at magnetic beads exploiting the adhesive property of a chimeric hydrophobin-laccase.


Assuntos
Lacase , Nanotubos de Carbono , Antracenos/metabolismo , Lacase/química , Nanotubos de Carbono/química , Oxirredução , Ácidos Sulfônicos/química
6.
Inorg Chem ; 61(38): 14997-15006, 2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36106824

RESUMO

A new ligand, namely, 2-(5-(pyren-1-yl)pentyl)-9-methyl-1,10-phenanthroline, as well as new bis(2,9-dialkyl-1,10-phenanthroline)copper(II) complexes were designed, which were immobilized on multiwalled carbon nanotube (MWCNT) electrodes. These complexes show a high tendency of autoreduction into their copper(I) form according to electrochemical and EPR experiments. These complexes exhibit strong interactions with MWCNT sidewalls either with or without anchor functions such as the pyrene moiety. The pyrene-modified derivative can be electropolymerized on glassy carbon and MWCNT electrodes to form a poly-[bis(2-(5-(pyren-1-yl)pentyl)-9-methyl-1,10-phenanthroline)copper(II)] metallopolymer film. Furthermore, these MWCNT-supported bis(2,9-dialkyl-1,10-phenanthroline)copper complexes demonstrate a low overpotential for a 4H+/4e- oxygen reduction reaction at pH 5 with an onset potential of 0.86 V versus RHE. Integration of these functionalized MWCNTs at gas-diffusion electrodes of H2/air fuel cells led to a high open-circuit voltage of 0.84 V and a maximum current density of 1.77 mW cm-2 using a Pt/C anode.

7.
Angew Chem Int Ed Engl ; 61(21): e202117212, 2022 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-35274429

RESUMO

An original 1-acetato-4-(1-pyrenyl)-1,4,7-triazacyclononane (AcPyTACN) was synthesized for the immobilization of a His-tagged recombinant CODH from Rhodospirillum rubrum (RrCODH) on carbon-nanotube electrodes. The strong binding of the enzyme at the Ni-AcPyTACN complex affords a high current density of 4.9 mA cm-2 towards electroenzymatic CO2 reduction and a high stability of more than 6×106  TON when integrated on a gas-diffusion bioelectrode.


Assuntos
Aldeído Oxirredutases , Complexos Multienzimáticos , Aldeído Oxirredutases/metabolismo , Compostos Aza , Dióxido de Carbono/metabolismo , Monóxido de Carbono/metabolismo , Histidina , Complexos Multienzimáticos/metabolismo , Níquel/metabolismo , Piperidinas , Pirenos
8.
Langmuir ; 37(3): 1001-1011, 2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33433232

RESUMO

Carbon nanotube electrodes were modified with ferrocene and laccase using two different click reactions strategies and taking advantage of bifunctional dendrimers and cyclopeptides. Using diazonium functionalization and the efficiency of oxime ligation, the combination of both multiwalled carbon nanotube surfaces and modified dendrimers or cyclopeptides allows the access to a high surface coverage of ferrocene in the order of 50 nmol cm-2, a 50-fold increase compared to a classic click reaction without oxime ligation of these highly branched macromolecules. Furthermore, this original immobilization strategy allows the immobilization of mono- and bi-functionalized active multicopper enzymes, laccases, via copper(I)-catalyzed azide-alkyne cycloaddition. Electrochemical studies underline the high efficiency of the oxime-ligated dendrimers or cyclopeptides for the immobilization of redox entities on surfaces while being detrimental to electron tunneling with enzyme active sites despite controlled orientation.

9.
Inorg Chem ; 60(17): 12772-12780, 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34416109

RESUMO

Nickel superoxide dismutase (NiSOD) is an enzyme that protects cells against O2·-. While the structure of its active site is known, the mechanism of the catalytic cycle is still not elucidated. Its active site displays a square planar NiII center with two thiolates, the terminal amine and an amidate. We report here a bioinspired NiII complex built on an ATCUN-like binding motif modulated with one cysteine, which demonstrates catalytic SOD activity in water (kcat = 8.4(2) × 105 M-1 s-1 at pH = 8.1). Its reactivity with O2·- was also studied in acetonitrile allowing trapping two different short-lived species that were characterized by electron paramagnetic resonance or spectroelectrochemistry and a combination of density functional theory (DFT) and time-dependent DFT calculations. Based on these observations, we propose that O2·- interacts first with the complex outer sphere through a H-bond with the peptide scaffold in a [NiIIO2·-] species. This first species could then evolve into a NiIII hydroperoxo inner sphere species through a reaction driven by protonation that is thermodynamically highly favored according to DFT calculations.


Assuntos
Materiais Biomiméticos/química , Complexos de Coordenação/química , Superóxidos/química , Catálise , Teoria da Densidade Funcional , Modelos Químicos , Estrutura Molecular , Níquel/química , Superóxido Dismutase/química
10.
Inorg Chem ; 60(10): 6922-6929, 2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-33759509

RESUMO

Unprotected mononuclear pyrene-modified (bispyridylaminomethyl)methylphenol copper complexes were designed to be immobilized at multiwalled carbon nanotube (MWCNT) electrodes and form dinuclear bis(µ-phenolato) complexes on the surface. These complexes exhibit a high oxygen reduction reaction activity of 12.7 mA cm-2 and an onset potential of 0.78 V versus reversible hydrogen electrode. The higher activity of these complexes compared to that of mononuclear complexes with bulkier groups is induced by the favorable early formation of a dinuclear catalytic species on MWCNT.

11.
Chemistry ; 26(21): 4798-4804, 2020 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-31999372

RESUMO

A maximization of a direct electron transfer (DET) between redox enzymes and electrodes can be obtained through the oriented immobilization of enzymes onto an electroactive surface. Here, a strategy for obtaining carbon nanotube (CNTs) based electrodes covalently modified with perfectly control-oriented fungal laccases is presented. Modelizations of the laccase-CNT interaction and of electron conduction pathways serve as a guide in choosing grafting positions. Homogeneous populations of alkyne-modified laccases are obtained through the reductive amination of a unique surface-accessible lysine residue selectively engineered near either one or the other of the two copper centers in enzyme variants. Immobilization of the site-specific alkynated enzymes is achieved by copper-catalyzed click reaction on azido-modified CNTs. A highly efficient reduction of O2 at low overpotential and catalytic current densities over -3 mA cm-2 are obtained by minimizing the distance from the electrode surface to the trinuclear cluster.


Assuntos
Cobre/química , Lacase/química , Nanotubos de Carbono/química , Oxigênio/química , Catálise , Química Click , Eletrodos , Elétrons , Enzimas Imobilizadas/química , Oxirredução
12.
Int J Mol Sci ; 21(11)2020 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-32466417

RESUMO

A chimeric enzyme based on the genetic fusion of a laccase with a hydrophobin domain was employed to functionalize few-layer graphene, previously exfoliated from graphite in the presence of the hydrophobin. The as-produced, biofunctionalized few-layer graphene was characterized by electrochemistry and Raman spectroscopy, and finally employed in the biosensing of phenols such as catechol and dopamine. This strategy paves the way for the functionalization of nanomaterials by hydrophobin domains of chimeric enzymes and their use in a variety of electrochemical applications.


Assuntos
Técnicas Biossensoriais/métodos , Enzimas Imobilizadas/química , Proteínas Fúngicas/química , Grafite/química , Lacase/química , Catecóis/análise , Dopamina/análise , Enzimas Imobilizadas/metabolismo , Proteínas Fúngicas/metabolismo , Lacase/metabolismo , Domínios Proteicos
13.
Inorg Chem ; 58(19): 12775-12785, 2019 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-31545024

RESUMO

The superoxide dismutase (SOD) activity of mononuclear NiII complexes, whose structures are inspired by the NiSOD, has been investigated. They have been designed with a sulfur-rich pseudopeptide ligand, derived from nitrilotriacetic acid (NTA), where the three acid functions are grafted with cysteines (L3S). Two mononuclear complexes, which exist in pH-dependent proportions, have been fully characterized by a combination of spectroscopic techniques including 1H NMR, UV-vis, circular dichroism, and X-ray absorption spectroscopy, together with theoretical calculations. They display similar square-planar S3O coordination, with the three thiolates of the three cysteine moieties from L3S coordinated to the NiII ion, together with either a water molecule at physiological pH, as [NiL3S(OH2)]-, or a hydroxo ion in more basic conditions, as [NiL3S(OH)]2-. The 1H NMR study has revealed that contrary to the hydroxo ligand, the bound water molecule is labile. The cyclic voltammogram of both complexes displays an irreversible one-electron oxidation process assigned to the NiII/NiIII redox system with Epa = 0.48 and 0.31 V versus SCE for NiL3S(OH2) and NiL3S(OH), respectively. The SOD activity of both complexes has been tested. On the basis of the xanthine oxidase assay, an IC50 of about 1 µM has been measured at pH 7.4, where NiL3S(OH2) is mainly present (93% of the NiII species), while the IC50 is larger than 100 µM at pH 9.6, where NiL3S(OH) is the major species (92% of the NiII species). Interestingly, only NiL3S(OH2) displays SOD activity, suggesting that the presence of a labile ligand is required. The SOD activity has been also evaluated under catalytic conditions at pH 7.75, where the ratio between NiL3S(OH2)/ NiL3S(OH) is about (86:14), and a rate constant, kcat = 1.8 × 105 M-1 s-1, has been measured. NiL3S(OH2) is thus the first low-molecular weight, synthetic, bioinspired Ni complex that displays catalytic SOD activity in water at physiological pH, although it does not contain any N-donor ligand in its first coordination sphere, as in the NiSOD. Overall, the data show that a key structural feature is the presence of a labile ligand in the coordination sphere of the NiII ion.


Assuntos
Complexos de Coordenação/química , Cisteína/química , Níquel/química , Compostos de Enxofre/química , Superóxido Dismutase/química , Materiais Biomiméticos/química , Concentração de Íons de Hidrogênio , Ligantes , Oxirredução
14.
Chemistry ; 24(33): 8404-8408, 2018 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-29603476

RESUMO

Herein, the direct electrochemistry of bilirubin oxidase from Magnaporthe orizae (MoBOD) was studied on CNTs functionalized by electrografting several types of diazonium salts. The functionalization induces favorable or unfavorable orientation of MoBOD, the latter being compared to the well-known BOD from Myrothecium verrucaria (MvBOD). On the same nanostructured electrodes, MoBOD can surpass MvBOD in terms of both current densities and minimal overpotentials. Added to the fact that MoBOD is also highly active at the gas-diffusion electrode (GDE), these findings make MoBOD one of the MCOs with the highest catalytic activity towards the oxygen reduction reaction (ORR).


Assuntos
Magnaporthe/química , Nanoestruturas/química , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/química , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Oxigênio/química , Difusão , Eletroquímica , Eletrodos , Hipóxia
15.
Sensors (Basel) ; 17(5)2017 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-28467365

RESUMO

Nanomaterials have become essential components for the development of biosensors since such nanosized compounds were shown to clearly increase the analytical performance. The improvements are mainly related to an increased surface area, thus providing an enhanced accessibility for the analyte, the compound to be detected, to the receptor unit, the sensing element. Nanomaterials can also add value to biosensor devices due to their intrinsic physical or chemical properties and can even act as transducers for the signal capture. Among the vast amount of examples where nanomaterials demonstrate their superiority to bulk materials, the combination of different nano-objects with different characteristics can create phenomena which contribute to new or improved signal capture setups. These phenomena and their utility in biosensor devices are summarized in a non-exhaustive way where the principles behind these synergetic effects are emphasized.


Assuntos
Nanoestruturas , Técnicas Biossensoriais , Transdutores
16.
Angew Chem Int Ed Engl ; 56(27): 7774-7778, 2017 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-28489268

RESUMO

Self-assembled redox protein nanowires have been exploited as efficient electron shuttles for an oxygen-tolerant hydrogenase. An intra/inter-protein electron transfer chain has been achieved between the iron-sulfur centers of rubredoxin and the FeS cluster of [NiFe] hydrogenases. [NiFe] Hydrogenases entrapped in the intricated matrix of metalloprotein nanowires achieve a stable, mediated bioelectrocatalytic oxidation of H2 at low-overpotential.


Assuntos
Hidrogenase/química , Nanofios/química , Oxigênio/química , Domínio Catalítico , Técnicas Eletroquímicas , Eletrodos , Transporte de Elétrons , Hidrogênio/química , Hidrogenase/metabolismo , Mathanococcus/metabolismo , Oxirredução , Oxigênio/metabolismo , Podospora/química , Podospora/metabolismo , Rubredoxinas/química , Rubredoxinas/metabolismo
17.
Angew Chem Int Ed Engl ; 56(7): 1845-1849, 2017 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-28078719

RESUMO

A biomimetic nickel bis-diphosphine complex incorporating the amino acid arginine in the outer coordination sphere was immobilized on modified carbon nanotubes (CNTs) through electrostatic interactions. The functionalized redox nanomaterial exhibits reversible electrocatalytic activity for the H2 /2 H+ interconversion from pH 0 to 9, with catalytic preference for H2 oxidation at all pH values. The high activity of the complex over a wide pH range allows us to integrate this bio-inspired nanomaterial either in an enzymatic fuel cell together with a multicopper oxidase at the cathode, or in a proton exchange membrane fuel cell (PEMFC) using Pt/C at the cathode. The Ni-based PEMFC reaches 14 mW cm-2 , only six-times-less as compared to full-Pt conventional PEMFC. The Pt-free enzyme-based fuel cell delivers ≈2 mW cm-2 , a new efficiency record for a hydrogen biofuel cell with base metal catalysts.

18.
Chemistry ; 22(30): 10494-500, 2016 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-27328033

RESUMO

We report the controlled orientation of bilirubin oxidases (BOD) from Myrothecium verrucaria on multiwalled carbon nanotubes (MWCNTs) functionalised by electrografting of 6-carboxynaphthalenediazonium and 4-(2-aminoethyl)benzenediazonium salts. On negatively charged naphthoate-modified MWCNTs, a high-potential (0.44 V vs. SCE) oxygen reduction electrocatalysis is observed, occurring via the T1 copper centre. On positively charged ammonium-modified MWCNTs, a low-potential (0.15 V) oxygen reduction electrocatalysis is observed, occurring through a partially oxidised state of the T2/T3 trinuclear copper cluster. Finally, chemically modified naphthoate MWCNTs exhibit high bioelectrocatalytic current densities of 3.9 mA cm(-2) under air at gas-diffusion electrode.


Assuntos
Compostos de Diazônio/química , Nanotubos de Carbono/química , Oxirredutases/química , Oxigênio/química , Catálise , Difusão , Técnicas Eletroquímicas , Eletrodos , Elétrons , Hypocreales/enzimologia , Conformação Molecular , Oxirredução , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/química , Propriedades de Superfície
19.
Cell Mol Life Sci ; 72(5): 941-52, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25577279

RESUMO

This review summarizes different approaches and breakthroughs in the development of laccase-based biocathodes for bioelectrocatalytic oxygen reduction. The use of advanced electrode materials, such as nanoparticles and nanowires is underlined. The applications of recently developed laccase electrodes for enzymatic biofuel cells are reviewed with an emphasis on in vivo application of biofuel cells.


Assuntos
Fontes de Energia Bioelétrica , Lacase/metabolismo , Biocatálise , Eletrodos , Lacase/química , Nanotubos de Carbono/química , Oxigênio/química , Oxigênio/metabolismo
20.
Angew Chem Int Ed Engl ; 55(7): 2517-20, 2016 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-26748615

RESUMO

An original copper-phenolate complex, mimicking the active center of galactose oxidase, featuring a pyrene group was synthesized. Supramolecular pi-stacking allows its efficient and soft immobilization at the surface of a Multi-Walled Carbon Nanotube (MWCNT) electrode. This MWCNT-supported galactose oxidase model exhibits a 4 H(+)/4 e(-) electrocatalytic activity towards oxygen reduction at a redox potential of 0.60 V vs. RHE at pH 5.


Assuntos
Cobre/química , Eletrodos , Nanotubos de Carbono , Oxigênio/química , Fenóis/química , Catálise , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA