Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Pathog ; 18(2): e1010339, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35157735

RESUMO

Adoptive T-cell immunotherapy has provided promising results in the treatment of viral complications in humans, particularly in the context of immunocompromised patients who have exhausted all other clinical options. The capacity to expand T cells from healthy immune individuals is providing a new approach to anti-viral immunotherapy, offering rapid off-the-shelf treatment with tailor-made human leukocyte antigen (HLA)-matched T cells. While most of this research has focused on the treatment of latent viral infections, emerging evidence that SARS-CoV-2-specific T cells play an important role in protection against COVID-19 suggests that the transfer of HLA-matched allogeneic off-the-shelf virus-specific T cells could provide a treatment option for patients with active COVID-19 or at risk of developing COVID-19. We initially screened 60 convalescent individuals and based on HLA typing and T-cell response profile, 12 individuals were selected for the development of a SARS-CoV-2-specific T-cell bank. We demonstrate that these T cells are specific for up to four SARS-CoV-2 antigens presented by a broad range of both HLA class I and class II alleles. These T cells show consistent functional and phenotypic properties, display cytotoxic potential against HLA-matched targets and can recognize HLA-matched cells infected with different SARS-CoV-2 variants. These observations demonstrate a robust approach for the production of SARS-CoV-2-specific T cells and provide the impetus for the development of a T-cell repository for clinical assessment.


Assuntos
Antígenos HLA/imunologia , Imunoterapia Adotiva , SARS-CoV-2/imunologia , Linfócitos T/imunologia , Adulto , Epitopos de Linfócito T , Feminino , Células HEK293 , Humanos , Imunofenotipagem , Masculino , Pessoa de Meia-Idade , Adulto Jovem
2.
Blood ; 128(6): 794-804, 2016 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-27338097

RESUMO

Chronic graft-versus-host disease (cGVHD) is a major cause of late mortality following allogeneic bone marrow transplantation (BMT) and is characterized by tissue fibrosis manifesting as scleroderma and bronchiolitis obliterans. The development of acute GVHD (aGVHD) is a powerful clinical predictor of subsequent cGVHD, suggesting that aGVHD may invoke the immunologic pathways responsible for cGVHD. In preclinical models in which sclerodermatous cGVHD develops after a preceding period of mild aGVHD, we show that antigen presentation within major histocompatibility complex (MHC) class II of donor dendritic cells (DCs) is markedly impaired early after BMT. This is associated with a failure of regulatory T-cell (Treg) homeostasis and cGVHD. Donor DC-restricted deletion of MHC class II phenocopied this Treg deficiency and cGVHD. Moreover, specific depletion of donor Tregs after BMT also induced cGVHD, whereas adoptive transfer of Tregs ameliorated it. These data demonstrate that the defect in Treg homeostasis seen in cGVHD is a causative lesion and is downstream of defective antigen presentation within MHC class II that is induced by aGVHD.


Assuntos
Apresentação de Antígeno , Transplante de Medula Óssea/efeitos adversos , Células Dendríticas/patologia , Doença Enxerto-Hospedeiro/patologia , Linfócitos T Reguladores/patologia , Doença Aguda , Transferência Adotiva , Animais , Doença Crônica , Células Dendríticas/imunologia , Doença Enxerto-Hospedeiro/etiologia , Doença Enxerto-Hospedeiro/imunologia , Doença Enxerto-Hospedeiro/terapia , Antígenos de Histocompatibilidade Classe II/imunologia , Contagem de Linfócitos , Camundongos , Camundongos Endogâmicos BALB C , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/transplante
3.
Am J Pathol ; 186(3): 524-38, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26762581

RESUMO

The interplay between the inflammatory infiltrate and tissue resident cell populations invokes fibrogenesis. However, the temporal and mechanistic contributions of these cells to fibrosis are obscure. To address this issue, liver inflammation, ductular reaction (DR), and fibrosis were induced in C57BL/6 mice by thioacetamide administration for up to 12 weeks. Thioacetamide treatment induced two phases of liver fibrosis. A rapid pericentral inflammatory infiltrate enriched in F4/80(+) monocytes co-localized with SMA(+) myofibroblasts resulted in early collagen deposition, marking the start of an initial fibrotic phase (1 to 6 weeks). An expansion of bone marrow-derived macrophages preceded a second phase, characterized by accelerated progression of fibrosis (>6 weeks) after DR migration from the portal tracts to the centrilobular site of injury, in association with an increase in DR/macrophage interactions. Although chemokine (C-C motif) ligand 2 (CCL2) mRNA was induced rapidly in response to thioacetamide, CCL2 deficiency only partially abrogated fibrosis. In contrast, colony-stimulating factor 1 receptor blockade diminished C-C chemokine receptor type 2 [CCR2(neg) (Ly6C(lo))] monocytes, attenuated the DR, and significantly reduced fibrosis, illustrating the critical role of colony-stimulating factor 1-dependent monocyte/macrophage differentiation and linking the two phases of injury. In response to liver injury, colony-stimulating factor 1 drives early monocyte-mediated myofibroblast activation and collagen deposition, subsequent macrophage differentiation, and their association with the advancing DR, the formation of fibrotic septa, and the progression of liver fibrosis to cirrhosis.


Assuntos
Hepatite Animal/patologia , Cirrose Hepática Experimental/patologia , Fator Estimulador de Colônias de Macrófagos/metabolismo , Macrófagos/metabolismo , Animais , Quimiocinas/genética , Quimiocinas/metabolismo , Colágeno Tipo I/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Hepatite Animal/genética , Hepatite Animal/metabolismo , Humanos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Cirrose Hepática Experimental/induzido quimicamente , Cirrose Hepática Experimental/genética , Cirrose Hepática Experimental/metabolismo , Fator Estimulador de Colônias de Macrófagos/genética , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Tioacetamida
4.
J Immunol ; 192(7): 3180-9, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24585878

RESUMO

The majority of allogeneic stem cell transplants are currently undertaken using G-CSF mobilized peripheral blood stem cells. G-CSF has diverse biological effects on a broad range of cells and IL-10 is a key regulator of many of these effects. Using mixed radiation chimeras in which the hematopoietic or nonhematopoietic compartments were wild-type, IL-10(-/-), G-CSFR(-/-), or combinations thereof we demonstrated that the attenuation of alloreactive T cell responses after G-CSF mobilization required direct signaling of the T cell by both G-CSF and IL-10. IL-10 was generated principally by radio-resistant tissue, and was not required to be produced by T cells. G-CSF mobilization significantly modulated the transcription profile of CD4(+)CD25(+) regulatory T cells, promoted their expansion in the donor and recipient and their depletion significantly increased graft-versus-host disease (GVHD). In contrast, stem cell mobilization with the CXCR4 antagonist AMD3100 did not alter the donor T cell's ability to induce acute GVHD. These studies provide an explanation for the effects of G-CSF on T cell function and demonstrate that IL-10 is required to license regulatory function but T cell production of IL-10 is not itself required for the attenuation GVHD. Although administration of CXCR4 antagonists is an efficient means of stem cell mobilization, this fails to evoke the immunomodulatory effects seen during G-CSF mobilization. These data provide a compelling rationale for considering the immunological benefits of G-CSF in selecting mobilization protocols for allogeneic stem cell transplantation.


Assuntos
Fator Estimulador de Colônias de Granulócitos/imunologia , Mobilização de Células-Tronco Hematopoéticas/métodos , Interleucina-10/imunologia , Transdução de Sinais/imunologia , Linfócitos T/imunologia , Animais , Benzilaminas , Proliferação de Células/efeitos dos fármacos , Ciclamos , Citometria de Fluxo , Doença Enxerto-Hospedeiro/genética , Doença Enxerto-Hospedeiro/imunologia , Fator Estimulador de Colônias de Granulócitos/farmacologia , Compostos Heterocíclicos/imunologia , Compostos Heterocíclicos/farmacologia , Interleucina-10/genética , Interleucina-10/metabolismo , Estimativa de Kaplan-Meier , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Análise de Sequência com Séries de Oligonucleotídeos , Receptores CXCR4/antagonistas & inibidores , Receptores CXCR4/imunologia , Receptores CXCR4/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transplante de Células-Tronco/métodos , Linfócitos T/metabolismo , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Transcriptoma/efeitos dos fármacos , Transcriptoma/imunologia
5.
Immunol Cell Biol ; 93(1): 43-50, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25367185

RESUMO

Allogeneic haematopoietic stem cell transplantation (HSCT) represents the only curative therapy for the majority of bone marrow-derived cancers. Unfortunately, HSCT can result in serious complications such as graft-versus-host disease, graft failure and infection. In the last decade, there have been major advances in the understanding of the role of autophagy in many diseases and cellular processes. Recent findings have demonstrated a crucial role for autophagy in haematopoietic stem cell survival and function, antigen presentation, T-cell differentiation and response to cytokine stimulation. Given the critical requirement for each of these processes in HSCT and subsequent complications, it is surprising that the contribution of autophagy to HSCT per se is relatively unexplored. In addition, the increasing use of autophagy-modulating drugs in the clinic further highlights the need to understand the role of autophagy in allogeneic HSCT. This review will cover established and implicated roles of autophagy in HSCT, suggesting this pathway as an important therapeutic target for improving transplant outcomes.


Assuntos
Autofagia/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/imunologia , Doença Enxerto-Hospedeiro/prevenção & controle , Neoplasias Hematológicas/terapia , Transplante de Células-Tronco Hematopoéticas , Fatores Imunológicos/uso terapêutico , Apresentação de Antígeno/efeitos dos fármacos , Autofagia/genética , Autofagia/imunologia , Medula Óssea/efeitos dos fármacos , Medula Óssea/imunologia , Medula Óssea/patologia , Sobrevivência Celular , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Células Dendríticas/patologia , Doença Enxerto-Hospedeiro/genética , Doença Enxerto-Hospedeiro/imunologia , Doença Enxerto-Hospedeiro/patologia , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/imunologia , Neoplasias Hematológicas/patologia , Humanos , Transdução de Sinais , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Linfócitos T/patologia , Transplante Homólogo , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/imunologia
6.
Lancet Oncol ; 15(13): 1451-1459, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25456364

RESUMO

BACKGROUND: Interleukin 6 mediates graft-versus-host disease (GVHD) in experimental allogeneic stem-cell transplantation (allogeneic SCT) and represents an attractive therapeutic target. We aimed to assess whether the humanised anti-interleukin-6 receptor monoclonal antibody, tocilizumab, could attenuate the incidence of acute GVHD. METHODS: We undertook a single-group, single-institution phase 1/2 study at the Royal Brisbane and Women's Hospital Bone Marrow Transplantation unit, QLD, Australia. Eligible patients were 18-65 years old and underwent T-replete HLA-matched allogeneic SCT with either total body irradiation-based myeloablative or reduced-intensity conditioning from unrelated or sibling donors. One intravenous dose of tocilizumab (8 mg/kg, capped at 800 mg, over 60 mins' infusion) was given the day before allogeneic SCT along with standard GVHD prophylaxis (cyclosporin [5 mg/kg per day on days -1 to +1, then 3 mg/kg per day to maintain therapeutic levels (trough levels of 140-300 ng/mL) for 100 days plus methotrexate [15 mg/m(2) on day 1, then 10 mg/m(2) on days 3, 6, and 11]). The primary endpoint was incidence of grade 2-4 acute GVHD at day 100, assessed and graded as per the Seattle criteria. Immunological profiles were compared with a non-randomised group of patients receiving allogeneic SCT, but not treated with tocilizumab. This trial is registered with the Australian and New Zealand Clinical Trials Registry, number ACTRN12612000726853. FINDINGS: Between Jan 19, 2012, and Aug 27, 2013, 48 eligible patients receiving cyclosporin and methotrexate as GVHD prophylaxis were enrolled into the study. The incidence of grade 2-4 acute GVHD in patients treated with tocilizumab at day 100 was 12% (95% CI 5-24), and the incidence of grade 3-4 acute GVHD was 4% (1-13). Grade 2-4 acute GVHD involving the skin developed in five (10%) patients of 48 treated with tocilizumab, involving the gastrointestinal tract in four (8%) patients; there were no reported cases involving the liver. Low incidences of grade 2-4 acute GVHD were noted in patients receiving both myeloablative total body irradiation-based conditioning (12% [95% CI 2-34) and fludarabine and melphalan reduced-intensity conditioning (12% [4-27]). Immune reconstitution was preserved in recipients of interleukin-6 receptor inhibition, but qualitatively modified with suppression of known pathogenic STAT3-dependent pathways. INTERPRETATION: Interleukin 6 is the main detectable and dysregulated cytokine secreted after allogeneic SCT and its inhibition is a potential new and simple strategy to protect from acute GVHD despite robust immune reconstitution; a randomised, controlled trial assessing tocilizumab in addition to standard GVHD prophylaxis in these patients is warranted. FUNDING: National Health and Medical Research Council and Queensland Health.


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Doença Enxerto-Hospedeiro/tratamento farmacológico , Neoplasias Hematológicas/complicações , Interleucina-6/antagonistas & inibidores , Transplante de Células-Tronco/efeitos adversos , Adolescente , Adulto , Idoso , Feminino , Seguimentos , Doença Enxerto-Hospedeiro/etiologia , Doença Enxerto-Hospedeiro/mortalidade , Neoplasias Hematológicas/mortalidade , Neoplasias Hematológicas/terapia , Humanos , Interleucina-6/imunologia , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Prognóstico , Estudos Prospectivos , Taxa de Sobrevida , Transplante Homólogo , Adulto Jovem
7.
Blood Adv ; 8(8): 2032-2043, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38295282

RESUMO

ABSTRACT: Autophagy is an intracellular survival process that has established roles in the long-term survival and function of hematopoietic stem cells (HSC). We investigated the contribution of autophagy to HSC fitness during allogeneic transplantation and graft-versus-host disease (GVHD). We demonstrate in vitro that both tumor necrosis factor and IL-1ß, major components of GVHD cytokine storm, synergistically promote autophagy in both HSC and their more mature hematopoietic progenitor cells (HPC). In vivo we demonstrate that autophagy is increased in donor HSC and HPC during GVHD. Competitive transplant experiments demonstrated that autophagy-deficient cells display reduced capacity to reconstitute the hematopoietic system compared to wild-type counterparts. In a major histocompatibility complex-mismatched model of GVHD and associated cytokine dysregulation, we demonstrate that autophagy-deficient HSC and progenitors fail to establish durable hematopoiesis, leading to primary graft failure and universal transplant related mortality. Using several different models, we confirm that autophagy activity is increased in early progenitor and HSC populations in the presence of T-cell-derived inflammatory cytokines and that these HSC populations require autophagy to survive. Thus, autophagy serves as a key survival mechanism in HSC and progenitor populations after allogeneic stem cell transplant and may represent a therapeutic target to prevent graft failure during GVHD.


Assuntos
Autofagia , Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Animais , Doença Enxerto-Hospedeiro/etiologia , Doença Enxerto-Hospedeiro/prevenção & controle , Camundongos , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/citologia , Modelos Animais de Doenças , Transplante Homólogo , Rejeição de Enxerto , Citocinas/metabolismo
8.
iScience ; 26(12): 108474, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38077128

RESUMO

Vaccines have curtailed the devastation wrought by COVID-19. Nevertheless, emerging variants result in a high incidence of breakthrough infections. Here we assess the impact of vaccination and breakthrough infection on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) T cell immunity. We demonstrate that COVID-19 vaccination induces robust spike-specific T cell responses that, within the CD4+ compartment, display comparable IFN-γ responses to SARS-CoV-2 infection without vaccination. Vaccine-induced CD8+ IFN-γ responses however, were significantly greater than those primed by SARS-CoV-2 infection alone. This increased responsiveness is associated with induction of novel HLA-restricted CD8+ T cell epitopes not primed by infection alone (without vaccination). Despite these augmented responses, breakthrough infection still induced de novo T cell responses against additional SARS-CoV-2 CD8+ epitopes that display HLA-associated immunodominance hierarchies consistent with those in unvaccinated COVID-19 convalescent individuals. This study demonstrates the unique modulation of anti-viral T cell responses against multiple viral antigens following consecutive yet distinct priming events in COVID-19 vaccination and breakthrough infection.

9.
Microbiol Spectr ; 10(1): e0278021, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35196796

RESUMO

Understanding the immune response to severe acute respiratory syndrome coronavirus (SARS-CoV-2) is critical to overcome the current coronavirus disease (COVID-19) pandemic. Efforts are being made to understand the potential cross-protective immunity of memory T cells, induced by prior encounters with seasonal coronaviruses, in providing protection against severe COVID-19. In this study we assessed T-cell responses directed against highly conserved regions of SARS-CoV-2. Epitope mapping revealed 16 CD8+ T-cell epitopes across the nucleocapsid (N), spike (S), and open reading frame (ORF)3a proteins of SARS-CoV-2 and five CD8+ T-cell epitopes encoded within the highly conserved regions of the ORF1ab polyprotein of SARS-CoV-2. Comparative sequence analysis showed high conservation of SARS-CoV-2 ORF1ab T-cell epitopes in seasonal coronaviruses. Paradoxically, the immune responses directed against the conserved ORF1ab epitopes were infrequent and subdominant in both convalescent and unexposed participants. This subdominant immune response was consistent with a low abundance of ORF1ab encoded proteins in SARS-CoV-2 infected cells. Overall, these observations suggest that while cross-reactive CD8+ T cells likely exist in unexposed individuals, they are not common and therefore are unlikely to play a significant role in providing broad preexisting immunity in the community. IMPORTANCE T cells play a critical role in protection against SARS-CoV-2. Despite being highly topical, the protective role of preexisting memory CD8+ T cells, induced by prior exposure to circulating common coronavirus strains, remains less clear. In this study, we established a robust approach to specifically assess T cell responses to highly conserved regions within SARS-CoV-2. Consistent with recent observations we demonstrate that recognition of these highly conserved regions is associated with an increased likelihood of milder disease. However, extending these observations we observed that recognition of these conserved regions is rare in both exposed and unexposed volunteers, which we believe is associated with the low abundance of these proteins in SARS-CoV-2 infected cells. These observations have important implications for the likely role preexisting immunity plays in controlling severe disease, further emphasizing the importance of vaccination to generate the immunodominant T cells required for immune protection.


Assuntos
COVID-19/imunologia , Epitopos de Linfócito T/imunologia , SARS-CoV-2/imunologia , Sequência de Aminoácidos , Linfócitos T CD8-Positivos/imunologia , COVID-19/genética , COVID-19/virologia , Sequência Conservada , Coronavirus/química , Coronavirus/classificação , Coronavirus/genética , Coronavirus/imunologia , Infecções por Coronavirus/genética , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Reações Cruzadas , Mapeamento de Epitopos , Epitopos de Linfócito T/química , Epitopos de Linfócito T/genética , Humanos , Células T de Memória/imunologia , SARS-CoV-2/química , SARS-CoV-2/genética , SARS-CoV-2/fisiologia , Alinhamento de Sequência , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia
10.
Nat Commun ; 13(1): 6387, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36302758

RESUMO

The emergence of the SARS-CoV-2 Omicron variant has raised concerns of escape from vaccine-induced immunity. A number of studies have demonstrated a reduction in antibody-mediated neutralization of the Omicron variant in vaccinated individuals. Preliminary observations have suggested that T cells are less likely to be affected by changes in Omicron. However, the complexity of human leukocyte antigen genetics and its impact upon immunodominant T cell epitope selection suggests that the maintenance of T cell immunity may not be universal. In this study, we describe the impact that changes in Omicron BA.1, BA.2 and BA.3 have on recognition by spike-specific T cells. These T cells constitute the immunodominant CD8+ T cell response in HLA-A*29:02+ COVID-19 convalescent and vaccinated individuals; however, they fail to recognize the Omicron-encoded sequence. These observations demonstrate that in addition to evasion of antibody-mediated immunity, changes in Omicron variants can also lead to evasion of recognition by immunodominant T cell responses.


Assuntos
COVID-19 , Epitopos Imunodominantes , Humanos , SARS-CoV-2/genética , Linfócitos T CD8-Positivos , Anticorpos Antivirais , Anticorpos Neutralizantes , Glicoproteína da Espícula de Coronavírus/genética
11.
J Immunol ; 183(5): 3099-108, 2009 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-19667084

RESUMO

C-type lectin receptors have recently been described as playing crucial roles in immunity and homeostasis since these proteins are able to recognize pathogens as well as self-Ags. We identified the C-type lectin-like receptor-1, CLEC-1, as being overexpressed in a model of rat allograft tolerance. We previously described in this model the expression of numerous cytoprotective molecules by graft endothelial cells and their interplay with regulatory CD4(+)CD25(+) T cells. In this study, we demonstrate that CLEC-1 is expressed by myeloid cells and specifically by endothelial cells in tolerated allografts and that CLEC-1 expression can be induced in endothelial cells by alloantigen-specific regulatory CD4(+)CD25(+) T cells. Analysis of CLEC-1 expression in naive rats demonstrates that CLEC-1 is highly expressed by myeloid cells and at a lower level by endothelial cells, and that its expression is down-regulated by inflammatory stimuli but increased by the immunoregulators IL-10 or TGFbeta. Interestingly, we demonstrate in vitro that inhibition of CLEC-1 expression in rat dendritic cells increases the subsequent differentiation of allogeneic Th17 T cells and decreases the regulatory Foxp3(+) T cell pool. Additionally, in chronically rejected allograft, the decreased expression of CLEC-1 is associated with a higher production of IL-17. Taken together, our data suggest that CLEC-1, expressed by myeloid cells and endothelial cells, is enhanced by regulatory mediators and moderates Th17 differentiation. Therefore, CLEC-1 may represent a new therapeutic agent to modulate the immune response in transplantation, autoimmunity, or cancer settings.


Assuntos
Células Endoteliais/imunologia , Células Endoteliais/metabolismo , Lectinas Tipo C/biossíntese , Ativação Linfocitária/imunologia , Células Mieloides/imunologia , Células Mieloides/metabolismo , Subpopulações de Linfócitos T/imunologia , Regulação para Cima/imunologia , Sequência de Aminoácidos , Animais , Linhagem Celular , Células Cultivadas , Células Endoteliais/patologia , Regulação da Expressão Gênica/imunologia , Sobrevivência de Enxerto/genética , Sobrevivência de Enxerto/imunologia , Transplante de Coração/imunologia , Transplante de Coração/patologia , Tolerância Imunológica/genética , Mediadores da Inflamação/fisiologia , Lectinas Tipo C/antagonistas & inibidores , Lectinas Tipo C/genética , Lectinas Tipo C/fisiologia , Ativação Linfocitária/genética , Dados de Sequência Molecular , Ratos , Ratos Endogâmicos Lew , Subpopulações de Linfócitos T/metabolismo
12.
NPJ Precis Oncol ; 5(1): 24, 2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33742086

RESUMO

Nasopharyngeal carcinoma (NPC) is an Epstein-Barr virus (EBV)-associated heterogeneous disease and is characterized by peritumoral immune infiltrate. Adoptive T-cell therapy (ACT) has emerged as a potential therapeutic strategy for NPC. However, the tumor microenvironment remains a major roadblock for the successful implementation of ACT in clinical settings. Expression of checkpoint molecules by malignant cells can inhibit the effector function of adoptively transferred EBV-specific T cells. Here we present a novel case report of a patient with metastatic NPC who was successfully treated with a combination of EBV-specific ACT and programmed cell death-1 blockade therapy. Following combination immunotherapy, the patient showed complete resolution of metastatic disease with no evidence of disease relapse for 22 months. Follow-up immunological analysis revealed dramatic restructuring of the global T-cell repertoire that was coincident with the clinical response. This case report provides an important platform for translating these findings to a larger cohort of NPC patients.

13.
Clin Transl Immunology ; 10(8): e1326, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34408875

RESUMO

OBJECTIVES: With the ongoing emergence of SARS-CoV-2 variants and potential to evade vaccine-induced neutralisation, understanding the magnitude and breadth of vaccine-induced T-cell immunity will be critical for the ongoing optimisation of vaccine approaches. Strategies that provide a rapid and easily translatable means of assessing virus-specific T-cell responses provide an opportunity to monitor the impact of vaccine rollouts in the community. In this study, we assessed whether our recently developed SARS-CoV-2 whole-blood assay could be used effectively to analyse T-cell responses following vaccination. METHODS: Following a median of 15 days after the first dose of the ChAdOx1-S (AstraZeneca®) vaccine, peripheral blood was isolated from 58 participants. Blood was incubated overnight with an overlapping set of spike protein peptides and assessed for cytokine production using a cytometric bead array. RESULTS: The majority of vaccine recipients (51/58) generated a T helper 1 response (IFN-γ and/or IL-2) following a single dose of ChAdOx1-S. The magnitude of the IFN-γ and IL-2 response strongly correlated in vaccine recipients. While the production of other cytokines was evident in individuals who did not generate IFN-γ and IL-2, they showed no correlation in magnitude, nor did we see a correlation between sex or age and the magnitude of the response. CONCLUSIONS: The whole-blood cytokine assay provides a rapid approach to assessing T-cell immunity against SARS-CoV-2 in vaccine recipients. While the majority of participants generated a robust SARS-CoV-2-specific T-cell response following their first dose, some did not, demonstrating the likely importance of the booster dose in improving T-cell immunity.

14.
J Immunother Cancer ; 9(2)2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33589524

RESUMO

BACKGROUND: Epstein-Barr virus (EBV), an oncogenic human gammaherpesvirus, is associated with a wide range of human malignancies of epithelial and B-cell origin. Recent studies have demonstrated promising safety and clinical efficacy of allogeneic 'off-the-shelf' virus-specific T-cell therapies for post-transplant viral complications. METHODS: Taking a clue from these studies, we developed a highly efficient EBV-specific T-cell expansion process using a replication-deficient AdE1-LMPpoly vector that specifically targets EBV-encoded nuclear antigen 1 (EBNA1) and latent membrane proteins 1 and 2 (LMP1 and LMP2), expressed in latency II malignancies. RESULTS: These allogeneic EBV-specific T cells efficiently recognized human leukocyte antigen (HLA)-matched EBNA1-expressing and/or LMP1 and LMP2-expressing malignant cells and demonstrated therapeutic potential in a number of in vivo models, including EBV lymphomas that emerged spontaneously in humanized mice following EBV infection. Interestingly, we were able to override resistance to T-cell therapy in vivo using a 'restriction-switching' approach, through sequential infusion of two different allogeneic T-cell therapies restricted through different HLA alleles. Furthermore, we have shown that inhibition of the programmed cell death protein-1/programmed death-ligand 1 axis in combination with EBV-specific T-cell therapy significantly improved overall survival of tumor-bearing mice when compared with monotherapy. CONCLUSION: These findings suggest that restriction switching by sequential infusion of allogeneic T-cell therapies that target EBV through distinct HLA alleles may improve clinical response.


Assuntos
Infecções por Vírus Epstein-Barr/terapia , Antígenos Nucleares do Vírus Epstein-Barr/imunologia , Herpesvirus Humano 4/imunologia , Inibidores de Checkpoint Imunológico/administração & dosagem , Linfoma/virologia , Linfócitos T/transplante , Proteínas da Matriz Viral/imunologia , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Infecções por Vírus Epstein-Barr/imunologia , Feminino , Antígenos HLA , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Linfoma/imunologia , Linfoma/terapia , Camundongos , Linfócitos T/imunologia , Transplante Homólogo , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Front Cell Dev Biol ; 9: 737880, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34631716

RESUMO

Regulatory T cell (Treg) reconstitution is essential for reestablishing tolerance and maintaining homeostasis following stem-cell transplantation. We previously reported that bone marrow (BM) is highly enriched in autophagy-dependent Treg and autophagy disruption leads to a significant Treg loss, particularly BM-Treg. To correct the known Treg deficiency observed in chronic graft-versus-host disease (cGVHD) patients, low dose IL-2 infusion has been administered, substantially increasing peripheral Treg (pTreg) numbers. However, as clinical responses were only seen in ∼50% of patients, we postulated that pTreg augmentation was more robust than for BM-Treg. We show that BM-Treg and pTreg have distinct characteristics, indicated by differential transcriptome expression for chemokine receptors, transcription factors, cell cycle control of replication and genes linked to Treg function. Further, BM-Treg were more quiescent, expressed lower FoxP3, were highly enriched for co-inhibitory markers and more profoundly depleted than splenic Treg in cGVHD mice. In vivo our data are consistent with the BM and not splenic microenvironment is, at least in part, driving this BM-Treg signature, as adoptively transferred splenic Treg that entered the BM niche acquired a BM-Treg phenotype. Analyses identified upregulated expression of IL-9R, IL-33R, and IL-7R in BM-Treg. Administration of the T cell produced cytokine IL-2 was required by splenic Treg expansion but had no impact on BM-Treg, whereas the converse was true for IL-9 administration. Plasmacytoid dendritic cells (pDCs) within the BM also may contribute to BM-Treg maintenance. Using pDC-specific BDCA2-DTR mice in which diptheria toxin administration results in global pDC depletion, we demonstrate that pDC depletion hampers BM, but not splenic, Treg homeostasis. Together, these data provide evidence that BM-Treg and splenic Treg are phenotypically and functionally distinct and influenced by niche-specific mediators that selectively support their respective Treg populations. The unique properties of BM-Treg should be considered for new therapies to reconstitute Treg and reestablish tolerance following SCT.

16.
J Clin Invest ; 130(11): 6041-6053, 2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-32750039

RESUMO

BACKGROUNDThe recent failure of checkpoint-blockade therapies for glioblastoma multiforme (GBM) in late-phase clinical trials has directed interest toward adoptive cellular therapies (ACTs). In this open-label, first-in-human trial, we have assessed the safety and therapeutic potential of cytomegalovirus-specific (CMV-specific) ACT in an adjuvant setting for patients with primary GBM, with an ultimate goal to prevent or delay recurrence and prolong overall survival.METHODSTwenty-eight patients with primary GBM were recruited to this prospective study, 25 of whom were treated with in vitro-expanded autologous CMV-specific T cells. Participants were monitored for safety, progression-free survival, overall survival (OS), and immune reconstitution.RESULTSNo participants showed evidence of ACT-related toxicities. Of 25 evaluable participants, 10 were alive at the completion of follow-up, while 5 were disease free. Reconstitution of CMV-specific T cell immunity was evident and CMV-specific ACT may trigger a bystander effect leading to additional T cell responses to nonviral tumor-associated antigens through epitope spreading. Long-term follow-up of participants treated before recurrence showed significantly improved OS when compared with those who progressed before ACT (median 23 months, range 7-65 vs. median 14 months, range 5-19; P = 0.018). Gene expression analysis of the ACT products indicated that a favorable T cell gene signature was associated with improved long-term survival.CONCLUSIONData presented in this study demonstrate that CMV-specific ACT can be safely used as an adjuvant therapy for primary GBM and, if offered before recurrence, this therapy may improve OS of GBM patients.TRIAL REGISTRATIONanzctr.org.au: ACTRN12615000656538.FUNDINGPhilanthropic funding and the National Health and Medical Research Council (Australia).


Assuntos
Transfusão de Sangue Autóloga , Citomegalovirus/imunologia , Glioblastoma , Transfusão de Linfócitos , Linfócitos T/imunologia , Adulto , Intervalo Livre de Doença , Feminino , Seguimentos , Glioblastoma/imunologia , Glioblastoma/mortalidade , Glioblastoma/terapia , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Taxa de Sobrevida
17.
J Clin Invest ; 129(11): 5020-5032, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31415240

RESUMO

BACKGROUNDImpaired T cell immunity in transplant recipients is associated with infection-related morbidity and mortality. We recently reported the successful use of adoptive T cell therapy (ACT) against drug-resistant/recurrent cytomegalovirus in solid-organ transplant recipients.METHODSIn the present study, we used high-throughput T cell receptor Vß sequencing and T cell functional profiling to delineate the impact of ACT on T cell repertoire remodeling in the context of pretherapy immunity and ACT products.RESULTSThese analyses indicated that a clinical response was coincident with significant changes in the T cell receptor Vß landscape after therapy. This restructuring was associated with the emergence of effector memory T cells in responding patients, while nonresponders displayed dramatic pretherapy T cell expansions with minimal change following ACT. Furthermore, immune reconstitution included both adoptively transferred clonotypes and endogenous clonotypes not detected in the ACT products.CONCLUSIONThese observations demonstrate that immune control following ACT requires significant repertoire remodeling, which may be impaired in nonresponders because of the preexisting immune environment. Immunological interventions that can modulate this environment may improve clinical outcomes.TRIAL REGISTRATIONAustralian New Zealand Clinical Trial Registry, ACTRN12613000981729.FUNDINGThis study was supported by funding from the National Health and Medical Research Council, Australia (APP1132519 and APP1062074).


Assuntos
Transferência Adotiva , Infecções por Citomegalovirus , Citomegalovirus/imunologia , Farmacorresistência Viral/imunologia , Transplante de Órgãos , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia , Linfócitos T , Adulto , Infecções por Citomegalovirus/imunologia , Infecções por Citomegalovirus/patologia , Infecções por Citomegalovirus/terapia , Feminino , Humanos , Masculino , Linfócitos T/imunologia , Linfócitos T/patologia , Linfócitos T/transplante
18.
Int J Hematol ; 105(2): 153-161, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27943115

RESUMO

Regulatory T cells (Treg) are a suppressive T cell population which play a crucial role in the establishment of tolerance after stem cell transplantation (SCT) by controlling the effector T cell responses that drive acute and chronic GVHD. The BM compartment is enriched in a highly suppressive, activated/memory autophagy-dependent Treg population, which contributes to the HSC engraftment and the control of GVHD. G-CSF administration releases Treg from the BM through disruption of the CXCR4/SDF-1 axis and further improves Treg survival following SCT through the induction of autophagy. However, AMD3100 is more efficacious in mobilizing these Treg highlighting the potential for optimized mobilization regimes to produce more tolerogenic grafts. Notably, the disruption of adhesive interaction between integrins and their ligands contributes to HSC mobilization and may be relevant for BM Treg. Importantly, the Tregs in the BM niche contribute to maintenance of the HSC niche and appear required for optimal control of GVHD post-transplant. Although poorly studied, the BM Treg appear phenotypically and functionally unique to Treg in the periphery. Understanding the requirements for maintaining the enrichment, function and survival of BM Treg needs to be further investigated to improve therapeutic strategies and promote tolerance after SCT.


Assuntos
Transplante de Células-Tronco/métodos , Linfócitos T Reguladores/citologia , Aloenxertos , Células da Medula Óssea/citologia , Doença Enxerto-Hospedeiro/imunologia , Doença Enxerto-Hospedeiro/prevenção & controle , Humanos , Tolerância Imunológica/imunologia , Transplante de Células-Tronco/efeitos adversos , Transplante de Células-Tronco/normas , Linfócitos T Reguladores/imunologia
19.
Blood Adv ; 1(9): 557-568, 2017 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-29296975

RESUMO

Dendritic cells (DCs) represent essential antigen-presenting cells that are critical for linking innate and adaptive immunity, and influencing T-cell responses. Among pattern recognition receptors, DCs express C-type lectin receptors triggered by both exogenous and endogenous ligands, therefore dictating pathogen response, and also shaping T-cell immunity. We previously described in rat, the expression of the orphan C-type lectin-like receptor-1 (CLEC-1) by DCs and demonstrated in vitro its inhibitory role in downstream T helper 17 (Th17) activation. In this study, we examined the expression and functionality of CLEC-1 in human DCs, and show a cell-surface expression on the CD16- subpopulation of blood DCs and on monocyte-derived DCs (moDCs). CLEC-1 expression on moDCs is downregulated by inflammatory stimuli and enhanced by transforming growth factor ß. Moreover, we demonstrate that CLEC-1 is a functional receptor on human moDCs and that although not modulating the spleen tyrosine kinase-dependent canonical nuclear factor-κB pathway, represses subsequent Th17 responses. Interestingly, a decreased expression of CLEC1A in human lung transplants is predictive of the development of chronic rejection and is associated with a higher level of interleukin 17A (IL17A). Importantly, using CLEC-1-deficient rats, we showed that disruption of CLEC-1 signaling led to an enhanced Il12p40 subunit expression in DCs, and to an exacerbation of downstream in vitro and in vivo CD4+ Th1 and Th17 responses. Collectively, our results establish a role for CLEC-1 as an inhibitory receptor in DCs able to dampen activation and downstream effector Th responses. As a cell-surface receptor, CLEC-1 may represent a useful therapeutic target for modulating T-cell immune responses in a clinical setting.

20.
JCI Insight ; 1(15): e86850, 2016 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-27699243

RESUMO

Regulatory T cells (Tregs) play a crucial role in the maintenance of peripheral tolerance. Quantitative and/or qualitative defects in Tregs result in diseases such as autoimmunity, allergy, malignancy, and graft-versus-host disease (GVHD), a serious complication of allogeneic stem cell transplantation (SCT). We recently reported increased expression of autophagy-related genes (Atg) in association with enhanced survival of Tregs after SCT. Autophagy is a self-degradative process for cytosolic components that promotes cell homeostasis and survival. Here, we demonstrate that the disruption of autophagy within FoxP3+ Tregs (B6.Atg7fl/fl-FoxP3cre+ ) resulted in a profound loss of Tregs, particularly within the bone marrow (BM). This resulted in dysregulated effector T cell activation and expansion, and the development of enterocolitis and scleroderma in aged mice. We show that the BM compartment is highly enriched in TIGIT+ Tregs and that this subset is differentially depleted in the absence of autophagy. Moreover, following allogeneic SCT, recipients of grafts from B6.Atg7fl/fl-FoxP3cre+ donors exhibited reduced Treg reconstitution, exacerbated GVHD, and reduced survival compared with recipients of B6.WT-FoxP3cre+ grafts. Collectively, these data indicate that autophagy-dependent Tregs are critical for the maintenance of tolerance after SCT and that the promotion of autophagy represents an attractive immune-restorative therapeutic strategy after allogeneic SCT.


Assuntos
Autofagia , Doença Enxerto-Hospedeiro/imunologia , Linfócitos T Reguladores/imunologia , Animais , Medula Óssea/fisiopatologia , Feminino , Transplante de Células-Tronco Hematopoéticas , Tolerância Imunológica , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA