Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Int J Part Ther ; 8(1): 50-61, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34285935

RESUMO

PURPOSE: A multi-field optimization (MFO) technique that uses beam-specific spot placement volumes (SPVs) and spot avoidance volumes (SAVs) is introduced for bilateral head and neck (H&N) cancers. These beam-specific volumes are used to guide the optimizer to consistently achieve optimal organ-at-risk (OAR) sparing with target coverage and plan robustness. MATERIALS AND METHODS: Implementation of this technique using a 4-beam, 5-beam, and variant 5-beam arrangement is discussed. The generation of beam-specific SPVs and SAVs derived from target and OARs are shown. The SPVs for select fields are further partitioned into optimization volumes for uniform dose distributions that resemble those of single-field optimization (SFO). A conventional MFO plan that does not use beam-specific spot placement guidance (MFOcon) and an MFO plan that uses only beam-specific SPV (MFOspv) are compared with current technique (MFOspv/sav), using both simulated scenarios and forward-calculated plans on weekly verification computed tomography (VFCT) scans. RESULTS: Dose distribution characteristics of the 4-beam, 5-beam, and variant 5-beam technique are demonstrated with discussion on OAR sparing. When comparing the MFOcon, MFOspv, and MFOspv/sav, the MFOspv/sav is shown to have superior OAR sparing in 9 of the 14 OARs examined. It also shows clinical plan robustness when evaluated by using both simulated uncertainty scenarios and forward-calculated weekly VFCTs throughout the 7-week treatment course. CONCLUSION: The MFOspv/sav technique is a systematic approach using SPVs and SAVs to guide the optimizer to consistently reach desired OAR dose values and plan robustness.

2.
Med Dosim ; 45(3): e10-e15, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31870600

RESUMO

Introduction The aim of this article is to introduce a novel protocol for proton pencil beam scanning treatment with moderate deep inspiration breath hold (mDIBH) and report on our clinical implementation results. Methods Three computed tomography (CT) scannings to build the patient's anatomy model were performed during the patient's voluntary mDIBH. All 3 CT scans were used in the optimization during the treatment planning process. Both orthogonal kV imaging and cone-beam computed tomography (CBCT) were implemented for patient alignment with BH prior to the treatment. The BH CBCT images were analyzed for BH reproducibility and the virtual total dose (VTD) retrospectively. To find the VTD, a series of deformable image registrations (DIR) were performed between CBCT and pCT. The effect of the variation of lung density on the dose distribution was also analyzed in the study. Results The values of the mean, standard deviation, maximum, and minimum of the tumor location difference between the CBCT and pCT were 1.9, 1.6, 4.7, and 0.0 mm, respectively. The percentage difference in D99% of CTVs between VTD and the nominal plan was within 1.5%. Conclusions The feedback-based voluntary moderate BH proton PBS treatment was successfully performed in our clinic. This study shows that there is a potential to implement the BH treatment widely in proton centers.


Assuntos
Suspensão da Respiração , Doença de Hodgkin/radioterapia , Terapia com Prótons , Tomografia Computadorizada de Feixe Cônico , Doença de Hodgkin/diagnóstico por imagem , Humanos , Masculino , Radiometria , Dosagem Radioterapêutica , Reprodutibilidade dos Testes , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA