Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 69(2): 238-252.e7, 2018 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-29351844

RESUMO

Maintenance of endoplasmic reticulum (ER) proteostasis is controlled by a dynamic signaling network known as the unfolded protein response (UPR). IRE1α is a major UPR transducer, determining cell fate under ER stress. We used an interactome screening to unveil several regulators of the UPR, highlighting the ER chaperone Hsp47 as the major hit. Cellular and biochemical analysis indicated that Hsp47 instigates IRE1α signaling through a physical interaction. Hsp47 directly binds to the ER luminal domain of IRE1α with high affinity, displacing the negative regulator BiP from the complex to facilitate IRE1α oligomerization. The regulation of IRE1α signaling by Hsp47 is evolutionarily conserved as validated using fly and mouse models of ER stress. Hsp47 deficiency sensitized cells and animals to experimental ER stress, revealing the significance of Hsp47 to global proteostasis maintenance. We conclude that Hsp47 adjusts IRE1α signaling by fine-tuning the threshold to engage an adaptive UPR.


Assuntos
Endorribonucleases/metabolismo , Proteínas de Choque Térmico HSP47/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Células COS , Chlorocebus aethiops , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático/fisiologia , Proteínas de Choque Térmico HSP47/fisiologia , Humanos , Camundongos , Chaperonas Moleculares/metabolismo , Transdução de Sinais , Estresse Fisiológico , Fatores de Transcrição/metabolismo , Resposta a Proteínas não Dobradas
2.
Hepatology ; 77(2): 619-639, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35524448

RESUMO

The endoplasmic reticulum (ER) is an intracellular organelle that fosters the correct folding of linear polypeptides and proteins, a process tightly governed by the ER-resident enzymes and chaperones. Failure to shape the proper 3-dimensional architecture of proteins culminates in the accumulation of misfolded or unfolded proteins within the ER, disturbs ER homeostasis, and leads to canonically defined ER stress. Recent studies have elucidated that cellular perturbations, such as lipotoxicity, can also lead to ER stress. In response to ER stress, the unfolded protein response (UPR) is activated to reestablish ER homeostasis ("adaptive UPR"), or, conversely, to provoke cell death when ER stress is overwhelmed and sustained ("maladaptive UPR"). It is well documented that ER stress contributes to the onset and progression of multiple hepatic pathologies including NAFLD, alcohol-associated liver disease, viral hepatitis, liver ischemia, drug toxicity, and liver cancers. Here, we review key studies dealing with the emerging role of ER stress and the UPR in the pathophysiology of liver diseases from cellular, murine, and human models. Specifically, we will summarize current available knowledge on pharmacological and non-pharmacological interventions that may be used to target maladaptive UPR for the treatment of nonmalignant liver diseases.


Assuntos
Estresse do Retículo Endoplasmático , Hepatopatias , Animais , Humanos , Camundongos , Estresse do Retículo Endoplasmático/fisiologia , Hepatopatias Alcoólicas , Chaperonas Moleculares , Hepatopatia Gordurosa não Alcoólica , Resposta a Proteínas não Dobradas , Hepatopatias/fisiopatologia
3.
Med Res Rev ; 43(1): 5-30, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35975736

RESUMO

The endoplasmic reticulum (ER) governs the proper folding of polypeptides and proteins through various chaperones and enzymes residing within the ER organelle. Perturbation in the ER folding process ensues when overwhelmed protein folding exceeds the ER handling capacity, leading to the accumulation of misfolded/unfolded proteins in the ER lumen-a state being referred to as ER stress. In turn, ER stress induces a gamut of signaling cascades, termed as the "unfolded protein response" (UPR) that reinstates the ER homeostasis through a panel of gene expression modulation. This type of UPR is usually deemed "adaptive UPR." However, persistent or unresolved ER stress hyperactivates UPR response, which ultimately, triggers cell death and inflammatory pathways, termed as "maladaptive/terminal UPR." A plethora of evidence indicates that crosstalks between ER stress (maladaptive UPR) and inflammation precipitate obesity pathogenesis. In this regard, the acquisition of the mechanisms linking ER stress to inflammation in obesity might unveil potential remedies to tackle this pathological condition. Herein, we aim to elucidate key mechanisms of ER stress-induced inflammation in the context of obesity and summarize potential therapeutic strategies in the management of obesity through maneuvering ER stress and ER stress-associated inflammation.


Assuntos
Estresse do Retículo Endoplasmático , Resposta a Proteínas não Dobradas , Humanos , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/patologia , Inflamação/patologia , Obesidade
4.
Mol Ther ; 30(12): 3542-3551, 2022 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-36242517

RESUMO

Hemophilia A gene therapy targets hepatocytes to express B domain deleted (BDD) clotting factor VIII (FVIII) to permit viral encapsidation. Since BDD is prone to misfolding in the endoplasmic reticulum (ER) and ER protein misfolding in hepatocytes followed by high-fat diet (HFD) can cause hepatocellular carcinoma (HCC), we studied how FVIII misfolding impacts HCC development using hepatocyte DNA delivery to express three proteins from the same parental vector: (1) well-folded cytosolic dihydrofolate reductase (DHFR); (2) BDD-FVIII, which is prone to misfolding in the ER; and (3) N6-FVIII, which folds more efficiently than BDD-FVIII. One week after DNA delivery, when FVIII expression was undetectable, mice were fed HFD for 65 weeks. Remarkably, all mice that received BDD-FVIII vector developed liver tumors, whereas only 58% of mice that received N6 and no mice that received DHFR vector developed liver tumors, suggesting that the degree of protein misfolding in the ER increases predisposition to HCC in the context of an HFD and in the absence of viral transduction. Our findings raise concerns of ectopic BDD-FVIII expression in hepatocytes in the clinic, which poses risks independent of viral vector integration. Limited expression per hepatocyte and/or use of proteins that avoid misfolding may enhance safety.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Camundongos , Animais , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Hepatócitos , DNA , Fatores de Coagulação Sanguínea
5.
Glia ; 69(1): 42-60, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32659044

RESUMO

In humans, obesity is associated with brain inflammation, glial reactivity, and immune cells infiltration. Studies in rodents have shown that glial reactivity occurs within 24 hr of high-fat diet (HFD) consumption, long before obesity development, and takes place mainly in the hypothalamus (HT), a crucial brain structure for controlling body weight. Here, we sought to characterize the postprandial HT inflammatory response to 1, 3, and 6 hr of exposure to either a standard diet (SD) or HFD. HFD exposure increased gene expression of astrocyte and microglial markers (glial fibrillary acidic protein [GFAP] and Iba1, respectively) compared to SD-treated mice and induced morphological modifications of microglial cells in HT. This remodeling was associated with higher expression of inflammatory genes and differential regulation of hypothalamic neuropeptides involved in energy balance regulation. DREADD and PLX5622 technologies, used to modulate GFAP-positive or microglial cells activity, respectively, showed that both glial cell types are involved in hypothalamic postprandial inflammation, with their own specific kinetics and reactiveness to ingested foods. Thus, recurrent exacerbated postprandial inflammation in the brain might promote obesity and needs to be characterized to address this worldwide crisis.


Assuntos
Gorduras na Dieta , Microglia , Animais , Dieta Hiperlipídica/efeitos adversos , Proteína Glial Fibrilar Ácida , Hipotálamo , Inflamação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade
6.
Adv Exp Med Biol ; 1243: 113-131, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32297215

RESUMO

Cellular stress induced by the accumulation of misfolded proteins in the endoplasmic reticulum (ER) activates an elaborate signalling network termed the unfolded protein response (UPR). This adaptive response is mediated by the transmembrane signal transducers IRE1, PERK, and ATF6 to decide cell fate of recovery or death. In malignant cells, UPR signalling may be required to maintain ER homeostasis and survival in the tumor microenvironment characterized by oxidative stress, hypoxia, lactic acidosis and compromised protein folding. Here we provide an overview of the ER response to cellular stress and how the sustained activation of this network enables malignant cells to develop tumorigenic, metastatic and drug-resistant capacities to thrive under adverse conditions. Understanding the complexity of ER stress responses and how to target the UPR in disease will have significant potential for novel future therapeutics.


Assuntos
Neoplasias/patologia , Resposta a Proteínas não Dobradas/fisiologia , Animais , Progressão da Doença , Estresse do Retículo Endoplasmático/fisiologia , Humanos , Neoplasias/tratamento farmacológico , Transdução de Sinais , Microambiente Tumoral
7.
Hepatology ; 68(2): 515-532, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29457838

RESUMO

Endoplasmic reticulum (ER) stress is activated in nonalcoholic fatty liver disease (NAFLD), raising the possibility that ER stress-dependent metabolic dysfunction, inflammation, and cell death underlie the transition from steatosis to steatohepatitis (nonalcoholic steatohepatitis; NASH). B-cell lymphoma 2 (BCL2)-associated X protein (Bax) inhibitor-1 (BI-1), a negative regulator of the ER stress sensor, inositol-requiring enzyme 1 alpha (IRE1α), has yet to be explored in NAFLD as a hepatoprotective agent. We hypothesized that the genetic ablation of BI-1 would render the liver vulnerable to NASH because of unrestrained IRE1α signaling. ER stress was induced in wild-type and BI-1-/- mice acutely by tunicamycin (TM) injection (1 mg/kg) or chronically by high-fat diet (HFD) feeding to determine NAFLD phenotype. Livers of TM-treated BI-1-/- mice showed IRE1α-dependent NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome activation, hepatocyte death, fibrosis, and dysregulated lipid homeostasis that led to liver failure within a week. The analysis of human NAFLD liver biopsies revealed BI-1 down-regulation parallel to the up-regulation of IRE1α endoribonuclease (RNase) signaling. In HFD-fed BI-1-/- mice that presented NASH and type 2 diabetes, exaggerated hepatic IRE1α, X-box binding protein 1 (XBP1), and C/EBP homologous protein (CHOP) expression was linked to activated NLRP3 inflammasome and caspase-1/-11. Rises in interleukin (IL)-1ß, IL-6, monocyte chemoattractant protein 1 (MCP1), chemokine (C-X-C motif) ligand 1 (CXCL1), and alanine transaminase (ALT)/aspartate transaminase (AST) levels revealed significant inflammation and injury, respectively. Pharmacological inhibition of IRE1α RNase activity with the small molecules, STF-083010 or 4µ8c, was evaluated in HFD-induced NAFLD. In BI-1-/- mice, either treatment effectively counteracted IRE1α RNase activity, improving glucose tolerance and rescuing from NASH. The hepatocyte-specific role of IRE1α RNase activity in mediating NLRP3 inflammasome activation and cell death was confirmed in primary mouse hepatocytes by IRE1α axis knockdown or its inhibition with STF-083010 or 4µ8c. CONCLUSION: Targeting IRE1α-dependent NLRP3 inflammasome signaling with pharmacological agents or by BI-1 may represent a tangible therapeutic strategy for NASH. (Hepatology 2018).


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Estresse do Retículo Endoplasmático/genética , Endorribonucleases/metabolismo , Proteínas de Membrana/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Técnicas de Cultura de Células , Morte Celular , Citocinas/metabolismo , Humanos , Immunoblotting , Inflamassomos/metabolismo , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais/genética
8.
J Hepatol ; 69(4): 927-947, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29940269

RESUMO

The global epidemic of obesity has been accompanied by a rising burden of non-alcoholic fatty liver disease (NAFLD), with manifestations ranging from simple steatosis to non-alcoholic steatohepatitis, potentially developing into hepatocellular carcinoma. Although much attention has focused on NAFLD, its pathogenesis remains largely obscure. The hallmark of NAFLD is the hepatic accumulation of lipids, which subsequently leads to cellular stress and hepatic injury, eventually resulting in chronic liver disease. Abnormal lipid accumulation often coincides with insulin resistance in steatotic livers and is associated with perturbed endoplasmic reticulum (ER) proteostasis in hepatocytes. In response to chronic ER stress, an adaptive signalling pathway known as the unfolded protein response is triggered to restore ER proteostasis. However, the unfolded protein response can cause inflammation, inflammasome activation and, in the case of non-resolvable ER stress, the death of hepatocytes. Experimental data suggest that the unfolded protein response influences hepatic tumour development, aggressiveness and response to treatment, offering novel therapeutic avenues. Herein, we provide an overview of the evidence linking ER stress to NAFLD and discuss possible points of intervention.


Assuntos
Estresse do Retículo Endoplasmático/fisiologia , Hepatopatia Gordurosa não Alcoólica/etiologia , Transdução de Sinais/fisiologia , Fator 6 Ativador da Transcrição/fisiologia , Animais , Autofagia , Cálcio/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Terapia Genética , Humanos , Resistência à Insulina , Metabolismo dos Lipídeos , Hepatopatia Gordurosa não Alcoólica/terapia , Sulfonamidas/uso terapêutico , Tiofenos/uso terapêutico , Resposta a Proteínas não Dobradas/efeitos dos fármacos
9.
J Hepatol ; 67(2): 328-338, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28323124

RESUMO

BACKGROUND & AIMS: Cluster of differentiation (CD)44 regulates adipose tissue inflammation in obesity and hepatic leukocyte recruitment in a lithogenic context. However, its role in hepatic inflammation in a mouse model of steatohepatitis and its relevance in humans have not yet been investigated. We aimed to evaluated the contribution of CD44 to non-alcoholic steatohepatitis (NASH) development and liver injury in mouse models and in patients at various stages of non-alcoholic fatty liver disease (NAFLD) progression. METHODS: The role of CD44 was evaluated in CD44-/- mice and after injections of an αCD44 antibody in wild-type mice challenged with a methionine- and choline-deficient diet (MCDD). In obese patients, hepatic CD44 (n=30 and 5 NASH patients with a second liver biopsy after bariatric surgery) and serum sCD44 (n=64) were evaluated. RESULTS: Liver inflammation (including inflammatory foci number, macrophage and neutrophil infiltration and CCL2/CCR2 levels), liver injury and fibrosis strongly decreased in CD44-/- mice compared to wild-type mice on MCDD. CD44 deficiency enhanced the M2 polarization and strongly decreased the activation of macrophages by lipopolysaccharide (LPS), hepatocyte damage-associated molecular patterns (DAMPs) and saturated fatty acids. Neutralization of CD44 in mice with steatohepatitis strongly decreased the macrophage infiltration and chemokine ligand (CCL)2 expression with a partial correction of liver inflammation and injury. In obese patients, hepatic CD44 was strongly upregulated in NASH patients (p=0.0008) and correlated with NAFLD activity score (NAS) (p=0.001), ballooning (p=0.003), alanine transaminase (p=0.005) and hepatic CCL2 (p<0.001) and macrophage marker CD68 (p<0.001) expression. Correction of NASH was associated with a strong decrease in liver CD44+ cells. Finally, the soluble form of CD44 increased with severe steatosis (p=0.0005) and NASH (p=0.007). CONCLUSION: Human and experimental data suggest that CD44 is a marker and key player of hepatic inflammation and its targeting partially corrects NASH. LAY SUMMARY: Human and experimental data suggest that CD44, a cellular protein mainly expressed in immune cells, is a marker and key player of non-alcoholic steatohepatitis (NASH). Indeed, CD44 enhances the non-alcoholic fatty liver (NAFL) (hepatic steatosis) to NASH progression by regulating hepatic macrophage polarization (pro-inflammatory phenotype) and infiltration (macrophage motility and the MCP1/CCL2/CCR2 system). Targeting CD44 partially corrects NASH, making it a potential therapeutic strategy.


Assuntos
Receptores de Hialuronatos/metabolismo , Hepatopatia Gordurosa não Alcoólica/etiologia , Adulto , Animais , Cirurgia Bariátrica , Biomarcadores/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Receptores de Hialuronatos/sangue , Receptores de Hialuronatos/deficiência , Receptores de Hialuronatos/genética , Fígado/imunologia , Fígado/metabolismo , Fígado/patologia , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Obesidade Mórbida/sangue , Obesidade Mórbida/metabolismo , Obesidade Mórbida/cirurgia , Regulação para Cima
10.
Alcohol Clin Exp Res ; 39(6): 1027-33, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25941109

RESUMO

BACKGROUND: Among its pleiotropic effects, vitamin D may protect the liver from fibrosis and/or inflammation. However, the impact of vitamin D on liver pathology in hepatitis C remains unclear, and very few studies including alcoholic patients with liver pathologies have been performed. Here we compared the levels of 25-OH vitamin D in the blood of alcoholic patients with the occurrence of alcoholic steatohepatitis (ASH) or bridging fibrosis. METHODS: One hundred and one alcoholic patients were included. All the patients received a liver biopsy, and the levels of 25-OH vitamin D were evaluated with the Liaison 25-OH vitamin D assay. Logistic regression analyses were performed to obtain predictive factors of liver histology. RESULTS: Among alcoholic patients, 40.6% presented ASH and 39.6% presented bridging fibrosis. A severe deficiency in 25-OH vitamin D (<10 ng/ml) was seen in 60.4% of patients. This deficiency was frequent in patients with ASH (85.4%) and in those with bridging fibrosis (80%) but was independently associated only with ASH (odds ratio = 8.46 [95% confidence interval 2.05 to 34.89], p = 0.003). CONCLUSIONS: In alcoholic patients, a severe deficiency in 25-OH vitamin D was independently associated with the occurrence of ASH.


Assuntos
Fígado Gorduroso Alcoólico/complicações , Fígado Gorduroso Alcoólico/epidemiologia , Deficiência de Vitamina D/complicações , Deficiência de Vitamina D/epidemiologia , Adulto , Alcoolismo/sangue , Alcoolismo/complicações , Calcifediol/sangue , Fígado Gorduroso Alcoólico/sangue , Feminino , Fibrose/complicações , Fibrose/epidemiologia , França/epidemiologia , Humanos , Masculino , Pessoa de Meia-Idade , Deficiência de Vitamina D/sangue
11.
Cell Death Dis ; 15(5): 334, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38744890

RESUMO

The prevalence of diabetes steadily increases worldwide mirroring the prevalence of obesity. Endoplasmic reticulum (ER) stress is activated in diabetes and contributes to ß-cell dysfunction and apoptosis through the activation of a terminal unfolded protein response (UPR). Our results uncover a new role for Bax Inhibitor-One (BI-1), a negative regulator of inositol-requiring enzyme 1 (IRE1α) in preserving ß-cell health against terminal UPR-induced apoptosis and pyroptosis in the context of supraphysiological loads of insulin production. BI-1-deficient mice experience a decline in endocrine pancreatic function in physiological and pathophysiological conditions, namely obesity induced by high-fat diet (HFD). We observed early-onset diabetes characterized by hyperglycemia, reduced serum insulin levels, ß-cell loss, increased pancreatic lipases and pro-inflammatory cytokines, and the progression of metabolic dysfunction. Pancreatic section analysis revealed that BI-1 deletion overburdens unfolded proinsulin in the ER of ß-cells, confirmed by ultrastructural signs of ER stress with overwhelmed IRE1α endoribonuclease (RNase) activity in freshly isolated islets. ER stress led to ß-cell dysfunction and islet loss, due to an increase in immature proinsulin granules and defects in insulin crystallization with the presence of Rod-like granules. These results correlated with the induction of autophagy, ER phagy, and crinophagy quality control mechanisms, likely to alleviate the atypical accumulation of misfolded proinsulin in the ER. In fine, BI-1 in ß-cells limited IRE1α RNase activity from triggering programmed ß-cell death through apoptosis and pyroptosis (caspase-1, IL-1ß) via NLRP3 inflammasome activation and metabolic dysfunction. Pharmaceutical IRE1α inhibition with STF-083010 reversed ß-cell failure and normalized the metabolic phenotype. These results uncover a new protective role for BI-1 in pancreatic ß-cell physiology as a stress integrator to modulate the UPR triggered by accumulating unfolded proinsulin in the ER, as well as autophagy and programmed cell death, with consequences on ß-cell function and insulin secretion. In pancreatic ß-cells, BI-1-/- deficiency perturbs proteostasis with proinsulin misfolding, ER stress, terminal UPR with overwhelmed IRE1α/XBP1s/CHOP activation, inflammation, ß-cell programmed cell death, and diabetes.


Assuntos
Apoptose , Estresse do Retículo Endoplasmático , Células Secretoras de Insulina , Proteínas de Membrana , Proinsulina , Proteostase , Resposta a Proteínas não Dobradas , Animais , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Proinsulina/metabolismo , Camundongos , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Dobramento de Proteína , Endorribonucleases/metabolismo , Camundongos Endogâmicos C57BL , Dieta Hiperlipídica , Camundongos Knockout , Masculino
12.
Sci Transl Med ; 13(604)2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-34321322

RESUMO

Type 2 diabetes (T2D) is a metabolic disorder characterized by hyperglycemia, hyperinsulinemia, and insulin resistance (IR). During the early phase of T2D, insulin synthesis and secretion by pancreatic ß cells is enhanced, which can lead to proinsulin misfolding that aggravates endoplasmic reticulum (ER) protein homeostasis in ß cells. Moreover, increased circulating insulin may contribute to fatty liver disease. Medical interventions aimed at alleviating ER stress in ß cells while maintaining optimal insulin secretion are therefore an attractive therapeutic strategy for T2D. Previously, we demonstrated that germline Chop gene deletion preserved ß cells in high-fat diet (HFD)-fed mice and in leptin receptor-deficient db/db mice. In the current study, we further investigated whether targeting Chop/Ddit3 specifically in murine ß cells conferred therapeutic benefits. First, we showed that Chop deletion in ß cells alleviated ß cell ER stress and delayed glucose-stimulated insulin secretion (GSIS) in HFD-fed mice. Second, ß cell-specific Chop deletion prevented liver steatosis and hepatomegaly in aged HFD-fed mice without affecting basal glucose homeostasis. Third, we provide mechanistic evidence that Chop depletion reduces ER Ca2+ buffering capacity and modulates glucose-induced islet Ca2+ oscillations, leading to transcriptional changes of ER chaperone profile ("ER remodeling"). Last, we demonstrated that a GLP1-conjugated Chop antisense oligonucleotide strategy recapitulated the reduction in liver triglycerides and pancreatic insulin content. In summary, our results demonstrate that Chop depletion in ß cells provides a therapeutic strategy to alleviate dysregulated insulin secretion and consequent fatty liver disease in T2D.


Assuntos
Diabetes Mellitus Tipo 2 , Fígado Gorduroso , Células Secretoras de Insulina , Animais , Diabetes Mellitus Tipo 2/metabolismo , Dieta Hiperlipídica/efeitos adversos , Estresse do Retículo Endoplasmático , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
13.
Med Sci (Paris) ; 36(2): 119-129, 2020 Feb.
Artigo em Francês | MEDLINE | ID: mdl-32129747

RESUMO

The incidence of chronic liver disease is constantly increasing, owing to the obesity epidemic. Non-alcoholic fatty liver disease (NAFLD) is currently affecting 20-30% of the general population and 75-100% of obese individuals. NAFLD ranges from simple steatosis to damaging non-alcoholic steatohepatitis (NASH), potentially developing into hepatocellular carcinoma. No efficient pharmacological treatment is yet available. During obesity, the hepatic ER stress response can arise from extracellular stress (lipids, glucose, cytokines) and from intracellular stress including lipid buildup in the hepatocyte (steatosis), a hallmark of NAFLD. The chronic activation of the hepatic ER stress response may be a crucial event in the steatosis-NASH transition, triggering cell death, inflammation and accelerating metabolic disorders. We discuss these aspects and we propose that targeting the ER stress response could be effective in treating NAFLD.


TITLE: La réponse au stress du réticulum endoplasmique dans la physiopathologie des maladies chroniques du foie. ABSTRACT: La prévalence des maladies chroniques du foie ne cesse d'augmenter, du fait de la pandémie de l'obésité. Ces maladies s'étendent de la bégnine stéatose à la stéatopathie non alcoolique (NASH) qui peut évoluer vers le carcinome hépatocellulaire. Il n'existe pas de traitement pour ces maladies. La transition stéatose-NASH apparaît déterminante dans leur progression. Au cours de l'obésité, l'activation chronique de la réponse au stress du réticulum endoplasmique (RE) jouerait un rôle crucial dans cette transition, conduisant à la mort cellulaire, à l'inflammation et à l'aggravation des désordres métaboliques. Dans cette revue, nous discutons ces aspects et proposons que le ciblage de cette réponse au stress du RE puisse être pertinent dans la prise en charge thérapeutique de la NASH.


Assuntos
Estresse do Retículo Endoplasmático/fisiologia , Hepatopatia Gordurosa não Alcoólica/etiologia , Resposta a Proteínas não Dobradas/fisiologia , Animais , Humanos , Fígado/metabolismo , Fígado/patologia , Terapia de Alvo Molecular/métodos , Terapia de Alvo Molecular/tendências , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Hepatopatia Gordurosa não Alcoólica/terapia , Transdução de Sinais/fisiologia
14.
FEBS J ; 287(9): 1722-1736, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31841271

RESUMO

Cellular gatekeepers are essential to maintain order within a cell and anticipate signals of stress to promote survival. BCL2 associated X, apoptosis regulator (BAX) inhibitor-1 (BI-1), also named transmembrane BAX inhibitor motif containing-6, is a highly conserved endoplasmic reticulum (ER) transmembrane protein. Originally identified as an inhibitor of BAX-induced apoptosis, its pro-survival properties have been expanded to include functions targeted against ER stress, calcium imbalance, reactive oxygen species accumulation, and metabolic dysregulation. Nevertheless, the structural biology and biochemical mechanism of action of BI-1 are still under debate. BI-1 has been implicated in several diseases, including chronic liver disease, diabetes, ischemia/reperfusion injury, neurodegeneration, and cancer. While most studies have demonstrated a beneficial role for BI-1 in the ubiquitous maintenance of cellular homeostasis, its expression in cancer cells seems most often to contribute to tumorigenesis and metastasis. Here, we summarize what is known about BI-1 and encourage future studies on BI-1's contribution to cellular life and death decisions to advocate its potential as a target for drug development and other therapeutic strategies.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Proteínas de Membrana/metabolismo , Estresse Fisiológico , Proteínas Reguladoras de Apoptose/química , Cálcio/metabolismo , Sobrevivência Celular , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático , Humanos , Proteínas de Membrana/química , Espécies Reativas de Oxigênio/metabolismo
15.
Cell Metab ; 27(4): 828-842.e7, 2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29551590

RESUMO

Dietary restriction (DR) was shown to impact on tumor growth with very variable effects depending on the cancer type. However, how DR limits cancer progression remains largely unknown. Here, we demonstrate that feeding mice a low-protein (Low PROT) isocaloric diet but not a low-carbohydrate (Low CHO) diet reduced tumor growth in three independent mouse cancer models. Surprisingly, this effect relies on anticancer immunosurveillance, as depleting CD8+ T cells, antigen-presenting cells (APCs), or using immunodeficient mice prevented the beneficial effect of the diet. Mechanistically, we established that a Low PROT diet induces the unfolded protein response (UPR) in tumor cells through the activation of IRE1α and RIG1 signaling, thereby resulting in cytokine production and mounting an efficient anticancer immune response. Collectively, our data suggest that a Low PROT diet induces an IRE1α-dependent UPR in cancer cells, enhancing a CD8-mediated T cell response against tumors.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Dieta com Restrição de Proteínas , Endorribonucleases/metabolismo , Vigilância Imunológica , Neoplasias Experimentais/dietoterapia , Neoplasias Experimentais/imunologia , Proteínas Serina-Treonina Quinases/metabolismo , Resposta a Proteínas não Dobradas/imunologia , Animais , Células Apresentadoras de Antígenos/imunologia , Linhagem Celular Tumoral , Neoplasias Colorretais/dietoterapia , Neoplasias Colorretais/imunologia , Endorribonucleases/genética , Feminino , Depleção Linfocítica , Linfoma/dietoterapia , Linfoma/imunologia , Melanoma Experimental/dietoterapia , Melanoma Experimental/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Proteínas Serina-Treonina Quinases/genética , RNA Helicases/metabolismo , Transdução de Sinais
16.
Dig Liver Dis ; 48(3): 302-8, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26553036

RESUMO

BACKGROUND: Immunoglobulin G4-related disease is a multi-systemic autoimmune disease. The sole involvement of the liver has been recently reported in Japanese patients and named "immunoglobulin G4-associated autoimmune hepatitis". AIM: To examine the baseline and the 2-year follow-up characteristics of non-Asian patients with immunoglobulin G4-associated autoimmune hepatitis compared to patients with classical autoimmune hepatitis. METHODS: This was a retrospective study of patients who had undergone liver biopsy between March 2009 and January 2012 before starting any treatment. All patients were treated according to the guidelines. Immunoglobulin G4-associated autoimmune hepatitis was diagnosed according to Umemura's histological definition: at least 10 positive immunoglobulin G4-plasma cells per high power field. RESULTS: Among 28 enrolled patients (males 39%, median age 54 years): 7 had immunoglobulin G4-associated autoimmune hepatitis (25%) and 21 had classical hepatitis; fibrosis and activity stages were F1: 57%, F2: 11%, F3: 11%, F4: 21% and A1: 18%, A2: 39%, A3: 43%. Alanine aminotransferase (ALT) activity and serum immunoglobulin G levels were similar in the two groups at baseline and at 2 years. Complete biochemical response (normal ALT) was similar in immunoglobulin G4-associated autoimmune hepatitis and classical hepatitis (67% vs. 59% at 2 years, p=0.74). CONCLUSION: Immunoglobulin G4-associated autoimmune hepatitis has been observed in Western patients and seems to evolve in a similar manner to classical hepatitis.


Assuntos
Hepatite Autoimune/epidemiologia , Imunoglobulina G/imunologia , Adulto , Idoso , Alanina Transaminase/sangue , Biópsia com Agulha de Grande Calibre , Feminino , França/epidemiologia , Hepatite Autoimune/sangue , Hepatite Autoimune/imunologia , Hepatite Autoimune/patologia , Humanos , Fígado/patologia , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos
17.
Front Physiol ; 7: 344, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27594839

RESUMO

The long-term effects of bariatric surgery on non-alcoholic steatohepatitis (NASH), focusing on liver injury and hepatocyte apoptosis, are not well-established. We here performed a longitudinal study with paired liver biopsies of nine morbidly obese women (median BMI: 42 [38.7; 45.1] kg/m(2)) with NASH with a median follow-up of 55 [44; 75] months after laparoscopic Roux-en-Y gastric bypass (LRYGB) surgery. LRYGB surgery was associated with significant weight loss (median BMI loss -13.7 [-16.4; -9.5] kg/m(2)), improved hepatic steatosis in all patients (55.5% with total resolution), and resolution of hepatic inflammation and hepatocyte ballooning in 100 and 88.8% of cases, respectively. Alanine aminotransferase levels dropped to normal values while hepatic activated cleaved caspase-3 levels strongly decreased after a median follow-up of 55 months. Hepatocyte apoptosis, as evaluated by serum caspase-generated keratin-18 fragment, improved within the first year following LRYGB and these improvements persisted for at least 55 months. LRYGB in morbidly obese patients with NASH is thus associated with a long-lasting beneficial impact on hepatic steatohepatitis and hepatocyte death.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA