Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Cereb Cortex ; 28(5): 1645-1655, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28334281

RESUMO

The behavioral changes that comprise operant learning are associated with plasticity in early sensory cortices as well as with modulation of gene expression, but the connection between the behavioral, electrophysiological, and molecular changes is only partially understood. We specifically manipulated c-Fos expression, a hallmark of learning-induced synaptic plasticity, in auditory cortex of adult mice using a novel approach based on RNA interference. Locally blocking c-Fos expression caused a specific behavioral deficit in a sound discrimination task, in parallel with decreased cortical experience-dependent plasticity, without affecting baseline excitability or basic auditory processing. Thus, c-Fos-dependent experience-dependent cortical plasticity is necessary for frequency discrimination in an operant behavioral task. Our results connect behavioral, molecular and physiological changes and demonstrate a role of c-Fos in experience-dependent plasticity and learning.


Assuntos
Córtex Auditivo/fisiologia , Aprendizagem por Discriminação/fisiologia , Potenciais Evocados Auditivos/fisiologia , Plasticidade Neuronal/fisiologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Estimulação Acústica , Potenciais de Ação/fisiologia , Animais , Aprendizagem da Esquiva , Eletroencefalografia , Extinção Psicológica , Medo/psicologia , Feminino , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Técnicas de Patch-Clamp , Proteínas Proto-Oncogênicas c-fos/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo
2.
Curr Biol ; 31(11): 2347-2358.e6, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-33848461

RESUMO

Animals display a rich repertoire of defensive responses adequate to the threat proximity. In social species, these reactions can be additionally influenced by the behavior of fearful conspecifics. However, the majority of neuroscientific studies on socially triggered defensive responses focuses on one type of behavior, freezing. To study a broader range of socially triggered reactions and underlying mechanisms, we directly compared two experimental paradigms, mimicking occurrence of the imminent versus remote threat. Observation of a partner currently experiencing aversive stimulation evokes passive defensive responses in the observer rats. Similar interaction with a partner that has just undergone the aversive stimulation prompts animals to increase active exploration. Although the observers display behaviors similar to those of the aversively stimulated demonstrators, their reactions are not synchronized in time, suggesting that observers' responses are caused by the change in their affective state rather than mimicry. Using opsins targeted to behaviorally activated neurons, we tagged central amygdala (CeA) cells implicated in observers' responses to either imminent or remote threat and reactivated them during the exploration of a novel environment. The manipulation revealed that the two populations of CeA cells promote passive or active defensive responses, respectively. Further experiments confirmed that the two populations of cells at least partially differ in expression of molecular markers (protein kinase C-δ [PKC-δ] and corticotropin-releasing factor [CRF]) and connectivity patterns (receiving input from the basolateral amygdala or from the anterior insula). The results are consistent with the literature on single subjects' fear conditioning, suggesting that similar neuronal circuits control defensive responses in social and non-social contexts.


Assuntos
Complexo Nuclear Basolateral da Amígdala , Núcleo Central da Amígdala , Animais , Antígeno Carcinoembrionário , Hormônio Liberador da Corticotropina , Medo , Ratos
3.
Biol Psychiatry ; 81(11): 907-917, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28190519

RESUMO

BACKGROUND: Dysfunction of the glutamatergic system has been implicated in alcohol addiction; however, the molecular underpinnings of this phenomenon are still poorly understood. In the current study we have investigated the possible function of matrix metalloproteinase-9 (MMP-9) in alcohol addiction because this protein has recently emerged as an important regulator of excitatory synaptic plasticity. METHODS: For long-term studies of alcohol drinking in mice we used IntelliCages. Dendritic spines were analyzed using Diolistic staining with DiI. Whole-cell patch clamp was used to assess silent synapses. Motivation for alcohol in human subjects was assessed on the basis of a Semi-Structured Assessment for the Genetics of Alcoholism interview. RESULTS: Mice devoid of MMP-9 (MMP-9 knockout) drank as much alcohol as wild-type animals; however, they were impaired in alcohol seeking during the motivation test and withdrawal. The deficit could be rescued by overexpression of exogenous MMP-9 in the central nucleus of the amygdala (CeA). Furthermore, the impaired alcohol seeking was associated with structural alterations of dendritic spines in the CeA and, moreover, whole-cell patch clamp analysis of the basal amygdala to CeA projections showed that alcohol consumption and withdrawal were associated with generation of silent synapses. These plastic changes were impaired in MMP-9 knockout mice. Finally, C/T polymorphism of MMP-9 gene at position -1562, which upregulates MMP-9 expression, correlated with increased motivation for alcohol in alcoholics. CONCLUSIONS: In aggregate, our results indicate a novel mechanism of alcohol craving that involves MMP-9-dependent synaptic plasticity in CeA.


Assuntos
Consumo de Bebidas Alcoólicas/fisiopatologia , Tonsila do Cerebelo/fisiologia , Comportamento de Procura de Droga/fisiologia , Metaloproteinase 9 da Matriz/fisiologia , Plasticidade Neuronal/fisiologia , Adulto , Alcoolismo/genética , Tonsila do Cerebelo/metabolismo , Tonsila do Cerebelo/patologia , Animais , Espinhas Dendríticas/patologia , Humanos , Masculino , Metaloproteinase 9 da Matriz/biossíntese , Metaloproteinase 9 da Matriz/genética , Camundongos , Camundongos Knockout , Plasticidade Neuronal/efeitos dos fármacos , Polimorfismo de Nucleotídeo Único , Síndrome de Abstinência a Substâncias/fisiopatologia
4.
Prog Brain Res ; 214: 135-57, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25410356

RESUMO

Recent studies implicate extracellular proteases in synaptic plasticity, learning, and memory. The data are especially strong for such serine proteases as thrombin, tissue plasminogen activator, neurotrypsin, and neuropsin as well as matrix metalloproteinases, MMP-9 in particular. The role of those enzymes in the aforementioned phenomena is supported by the experimental results on the expression patterns (at the gene expression and protein and enzymatic activity levels) and functional studies, including knockout mice, specific inhibitors, etc. Counterintuitively, the studies have shown that the extracellular proteolysis is not responsible mainly for an overall degradation of the extracellular matrix (ECM) and loosening perisynaptic structures, but rather allows for releasing signaling molecules from the ECM, transsynaptic proteins, and latent form of growth factors. Notably, there are also indications implying those enzymes in the major neuropsychiatric disorders, probably by contributing to synaptic aberrations underlying such diseases as schizophrenia, bipolar, autism spectrum disorders, and drug addiction.


Assuntos
Encéfalo/citologia , Matriz Extracelular/enzimologia , Aprendizagem/fisiologia , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Animais , Encefalopatias/patologia , Encefalopatias/fisiopatologia , Humanos , Peptídeo Hidrolases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA