Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Neurosci ; 34(25): 8432-48, 2014 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-24948799

RESUMO

The mammalian target of rapamycin (mTOR) pathway integrates multiple signals and regulates crucial cell functions via the molecular complexes mTORC1 and mTORC2. These complexes are functionally dependent on their raptor (mTORC1) or rictor (mTORC2) subunits. mTOR has been associated with oligodendrocyte differentiation and myelination downstream of the PI3K/Akt pathway, but the functional contributions of individual complexes are largely unknown. We show, by oligodendrocyte-specific genetic deletion of Rptor and/or Rictor in the mouse, that CNS myelination is mainly dependent on mTORC1 function, with minor mTORC2 contributions. Myelin-associated lipogenesis and protein gene regulation are strongly reliant on mTORC1. We found that also oligodendrocyte-specific overactivation of mTORC1, via ablation of tuberous sclerosis complex 1 (TSC1), causes hypomyelination characterized by downregulation of Akt signaling and lipogenic pathways. Our data demonstrate that a delicately balanced regulation of mTORC1 activation and action in oligodendrocytes is essential for CNS myelination, which has practical overtones for understanding CNS myelin disorders.


Assuntos
Complexos Multiproteicos/metabolismo , Fibras Nervosas Mielinizadas/metabolismo , Oligodendroglia/metabolismo , Medula Espinal/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/patologia , Feminino , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Fibras Nervosas Mielinizadas/patologia , Oligodendroglia/patologia , Medula Espinal/patologia
2.
Brain ; 137(Pt 3): 668-82, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24480485

RESUMO

The ganglioside-induced differentiation-associated protein 1 (GDAP1) is a mitochondrial fission factor and mutations in GDAP1 cause Charcot-Marie-Tooth disease. We found that Gdap1 knockout mice (Gdap1(-/-)), mimicking genetic alterations of patients suffering from severe forms of Charcot-Marie-Tooth disease, develop an age-related, hypomyelinating peripheral neuropathy. Ablation of Gdap1 expression in Schwann cells recapitulates this phenotype. Additionally, intra-axonal mitochondria of peripheral neurons are larger in Gdap1(-/-) mice and mitochondrial transport is impaired in cultured sensory neurons of Gdap1(-/-) mice compared with controls. These changes in mitochondrial morphology and dynamics also influence mitochondrial biogenesis. We demonstrate that mitochondrial DNA biogenesis and content is increased in the peripheral nervous system but not in the central nervous system of Gdap1(-/-) mice compared with control littermates. In search for a molecular mechanism we turned to the paralogue of GDAP1, GDAP1L1, which is mainly expressed in the unaffected central nervous system. GDAP1L1 responds to elevated levels of oxidized glutathione by translocating from the cytosol to mitochondria, where it inserts into the mitochondrial outer membrane. This translocation is necessary to substitute for loss of GDAP1 expression. Accordingly, more GDAP1L1 was associated with mitochondria in the spinal cord of aged Gdap1(-/-) mice compared with controls. Our findings demonstrate that Charcot-Marie-Tooth disease caused by mutations in GDAP1 leads to mild, persistent oxidative stress in the peripheral nervous system, which can be compensated by GDAP1L1 in the unaffected central nervous system. We conclude that members of the GDAP1 family are responsive and protective against stress associated with increased levels of oxidized glutathione.


Assuntos
Axônios/metabolismo , Doença de Charcot-Marie-Tooth/metabolismo , Mitocôndrias/metabolismo , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Animais , Células Cultivadas , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/fisiopatologia , DNA Mitocondrial/genética , Modelos Animais de Doenças , Glutationa/metabolismo , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Oxirredução , Estresse Oxidativo , Fenótipo
3.
Proc Natl Acad Sci U S A ; 107(8): 3817-22, 2010 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-20133718

RESUMO

Neurotrophin binding to the p75 neurotrophin receptor (p75(NTR)) activates neuronal apoptosis following adult central nervous system injury, but the underlying cellular mechanisms remain poorly defined. In this study, we show that the proform of nerve growth factor (proNGF) induces death of retinal ganglion cells in adult rodents via a p75(NTR)-dependent signaling mechanism. Expression of p75(NTR) in the adult retina is confined to Müller glial cells; therefore we tested the hypothesis that proNGF activates a non-cell-autonomous signaling pathway to induce retinal ganglion cell (RGC) death. Consistent with this, we show that proNGF induced robust expression of tumor necrosis factor alpha (TNFalpha) in Müller cells and that genetic or biochemical ablation of TNFalpha blocked proNGF-induced death of retinal neurons. Mice rendered null for p75(NTR), its coreceptor sortilin, or the adaptor protein NRAGE were defective in proNGF-induced glial TNFalpha production and did not undergo proNGF-induced retinal ganglion cell death. We conclude that proNGF activates a non-cell-autonomous signaling pathway that causes TNFalpha-dependent death of retinal neurons in vivo.


Assuntos
Apoptose , Fator de Crescimento Neural/metabolismo , Receptor de Fator de Crescimento Neural/metabolismo , Células Ganglionares da Retina/fisiologia , Fator de Necrose Tumoral alfa/fisiologia , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Animais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fator de Crescimento Neural/farmacologia , Ratos , Ratos Sprague-Dawley , Células Ganglionares da Retina/efeitos dos fármacos , Transdução de Sinais , Fator de Necrose Tumoral alfa/genética
4.
J Neurosci ; 29(17): 5536-45, 2009 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-19403821

RESUMO

The central hypothesis of excitotoxicity is that excessive stimulation of neuronal NMDA-sensitive glutamate receptors is harmful to neurons and contributes to a variety of neurological disorders. Glial cells have been proposed to participate in excitotoxic neuronal loss, but their precise role is defined poorly. In this in vivo study, we show that NMDA induces profound nuclear factor kappaB (NF-kappaB) activation in Müller glia but not in retinal neurons. Intriguingly, NMDA-induced death of retinal neurons is effectively blocked by inhibitors of NF-kappaB activity. We demonstrate that tumor necrosis factor alpha (TNFalpha) protein produced in Müller glial cells via an NMDA-induced NF-kappaB-dependent pathway plays a crucial role in excitotoxic loss of retinal neurons. This cell loss occurs mainly through a TNFalpha-dependent increase in Ca(2+)-permeable AMPA receptors on susceptible neurons. Thus, our data reveal a novel non-cell-autonomous mechanism by which glial cells can profoundly exacerbate neuronal death following excitotoxic injury.


Assuntos
Agonistas de Aminoácidos Excitatórios/toxicidade , Neurônios Retinianos/patologia , Neurônios Retinianos/fisiologia , Animais , Morte Celular/efeitos dos fármacos , Morte Celular/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , N-Metilaspartato/toxicidade , Neurônios Retinianos/efeitos dos fármacos , Fator de Necrose Tumoral alfa/fisiologia
5.
Mol Cell Neurosci ; 40(4): 410-20, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19146958

RESUMO

Little is known about the molecular mechanisms that limit the ability of retinal neurons to respond to neurotrophic factor stimulation following axonal injury. In the adult retina, nerve growth factor (NGF) binds to TrkA (expressed by neurons) and p75(NTR) (expressed by Müller glia), but fails to promote the survival of axotomized retinal ganglion cells (RGCs). We addressed the functional role of TrkA and p75(NTR) in this lack of survival by using peptidomimetic agonistic or antagonistic ligands specific for each receptor. While administration of exogenous NGF failed to rescue axotomized RGCs, administration of selective TrkA agonists led to robust neuroprotection. Surprisingly, we found a remarkable survival of axotomized RGCs following pharmacological inhibition of p75(NTR) or in p75(NTR) knockout mice. Combination of NGF or TrkA agonists with p75(NTR) antagonists further potentiated RGC neuroprotection in vivo, an effect that was greater than each treatment alone. NGF can therefore be neuroprotective when acting on neuronal TrkA receptors but engagement of p75(NTR) on glial cells antagonizes this effect. Our data reveal a novel mechanism by which p75(NTR) expressed on retinal glia can profoundly influence neuronal survival.


Assuntos
Sobrevivência Celular/fisiologia , Fator de Crescimento Neural/metabolismo , Neuroglia/metabolismo , Receptor trkA/metabolismo , Receptores de Fator de Crescimento Neural/metabolismo , Células Ganglionares da Retina/fisiologia , Animais , Axotomia , Feminino , Humanos , Ligantes , Camundongos , Camundongos Knockout , Fator de Crescimento Neural/agonistas , Proteínas do Tecido Nervoso , Neuroglia/citologia , Nervo Óptico/patologia , Ratos , Ratos Sprague-Dawley , Receptor trkA/agonistas , Receptor trkA/antagonistas & inibidores , Receptor trkA/genética , Receptores de Fatores de Crescimento , Receptores de Fator de Crescimento Neural/antagonistas & inibidores , Receptores de Fator de Crescimento Neural/genética , Células Ganglionares da Retina/citologia
6.
ASN Neuro ; 7(3)2015.
Artigo em Inglês | MEDLINE | ID: mdl-26129908

RESUMO

Histones deacetylases (HDACs), besides their function as epigenetic regulators, deacetylate and critically regulate the activity of nonhistone targets. In particular, HDACs control partially the proapoptotic activity of p53 by balancing its acetylation state. HDAC inhibitors have revealed neuroprotective properties in different models, but the exact mechanisms of action remain poorly understood. We have generated a conditional knockout mouse model targeting retinal ganglion cells (RGCs) to investigate specifically the functional role of HDAC1 and HDAC2 in an acute model of optic nerve injury. Our results demonstrate that combined HDAC1 and HDAC2 ablation promotes survival of axotomized RGCs. Based on global gene expression analyses, we identified the p53-PUMA apoptosis-inducing axis to be strongly activated in axotomized mouse RGCs. Specific HDAC1/2 ablation inhibited this apoptotic pathway by impairing the crucial acetylation status of p53 and reducing PUMA expression, thereby contributing to the ensuing enhanced neuroprotection due to HDAC1/2 depletion. HDAC1/2 inhibition and the affected downstream signaling components emerge as specific targets for developing therapeutic strategies in neuroprotection.


Assuntos
Sobrevivência Celular/fisiologia , Genes p53 , Histona Desacetilase 1/deficiência , Histona Desacetilase 2/deficiência , Neuroproteção , Traumatismos do Nervo Óptico/enzimologia , Células Ganglionares da Retina/enzimologia , Células Ganglionares da Retina/fisiologia , Acetilação , Doença Aguda , Animais , Apoptose/genética , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Axotomia , Modelos Animais de Doenças , Regulação da Expressão Gênica , Histona Desacetilase 1/genética , Histona Desacetilase 2/genética , Sistema de Sinalização das MAP Quinases , Camundongos Knockout , Traumatismos do Nervo Óptico/patologia , Células Ganglionares da Retina/patologia , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
7.
Cell Rep ; 9(2): 646-60, 2014 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-25310982

RESUMO

Myelin formation during peripheral nervous system (PNS) development, and reformation after injury and in disease, requires multiple intrinsic and extrinsic signals. Akt/mTOR signaling has emerged as a major player involved, but the molecular mechanisms and downstream effectors are virtually unknown. Here, we have used Schwann-cell-specific conditional gene ablation of raptor and rictor, which encode essential components of the mTOR complexes 1 (mTORC1) and 2 (mTORC2), respectively, to demonstrate that mTORC1 controls PNS myelination during development. In this process, mTORC1 regulates lipid biosynthesis via sterol regulatory element-binding proteins (SREBPs). This course of action is mediated by the nuclear receptor RXRγ, which transcriptionally regulates SREBP1c downstream of mTORC1. Absence of mTORC1 causes delayed myelination initiation as well as hypomyelination, together with abnormal lipid composition and decreased nerve conduction velocity. Thus, we have identified the mTORC1-RXRγ-SREBP axis controlling lipid biosynthesis as a major contributor to proper peripheral nerve function.


Assuntos
Complexos Multiproteicos/metabolismo , Bainha de Mielina/metabolismo , Sistema Nervoso Periférico/metabolismo , Receptor X Retinoide gama/metabolismo , Células de Schwann/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Células Cultivadas , Lipídeos/biossíntese , Alvo Mecanístico do Complexo 1 de Rapamicina , Alvo Mecanístico do Complexo 2 de Rapamicina , Camundongos , Complexos Multiproteicos/genética , Sistema Nervoso Periférico/crescimento & desenvolvimento , Sistema Nervoso Periférico/fisiologia , Proteína Regulatória Associada a mTOR , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Serina-Treonina Quinases TOR/genética
8.
Trends Neurosci ; 35(2): 123-34, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22192173

RESUMO

Glial cells and neurons are engaged in a continuous and highly regulated bidirectional dialog. A remarkable example is the control of myelination. Oligodendrocytes in the central nervous system (CNS) and Schwann cells (SCs) in the peripheral nervous system (PNS) wrap their plasma membranes around axons to organize myelinated nerve fibers that allow rapid saltatory conduction. The functionality of this system is critical, as revealed by numerous neurological diseases that result from deregulation of the system, including multiple sclerosis and peripheral neuropathies. In this review we focus on PNS myelination and present a conceptual framework that integrates crucial signaling mechanisms with basic SC biology. We will highlight signaling hubs and overarching molecular mechanisms, including genetic, epigenetic, and post-translational controls, which together regulate the interplay between SCs and axons, extracellular signals, and the transcriptional network.


Assuntos
Bainha de Mielina/fisiologia , Sistema Nervoso Periférico/fisiologia , Células de Schwann/fisiologia , Animais , Axônios/fisiologia , Movimento Celular/fisiologia
9.
Mol Neurobiol ; 44(3): 303-12, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21861092

RESUMO

Myelinated axons are a beautiful example of symbiotic interactions between two cell types: Myelinating glial cells organize axonal membranes and build their myelin sheaths to allow fast action potential conduction, while axons regulate myelination and enhance the survival of myelinating cells. Axonal demyelination, occurring in neurodegenerative diseases or after a nerve injury, results in severe motor and/or mental disabilities. Thus, understanding how the myelination process is induced, regulated, and maintained is crucial to develop new therapeutic strategies for regeneration in the nervous system. Epigenetic regulation has recently been recognized as a fundamental contributing player. In this review, we focus on the central mechanisms of gene regulation mediated by histone deacetylation and other key functions of histone deacetylases in Schwann cells and oligodendrocytes, the myelinating glia of the peripheral and central nervous systems.


Assuntos
Histona Desacetilases/metabolismo , Bainha de Mielina/metabolismo , Bainha de Mielina/fisiologia , Fibras Nervosas Mielinizadas/fisiologia , Animais , Axônios/patologia , Axônios/fisiologia , Axônios/ultraestrutura , Diferenciação Celular/fisiologia , Doenças Desmielinizantes/metabolismo , Doenças Desmielinizantes/patologia , Regulação da Expressão Gênica , Humanos , Fibras Nervosas Mielinizadas/ultraestrutura , Oligodendroglia/citologia , Oligodendroglia/fisiologia , Células de Schwann/citologia , Células de Schwann/fisiologia , Transmissão Sináptica/fisiologia
10.
Optom Vis Sci ; 85(6): 417-24, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18521011

RESUMO

A hallmark of glaucomatous optic nerve damage is retinal ganglion cell (RGC) death. RGCs, like other central nervous system neurons, have a limited capacity to survive or regenerate an axon after injury. Strategies that prevent or slow down RGC degeneration, in combination with intraocular pressure management, may be beneficial to preserve vision in glaucoma. Recent progress in neurobiological research has led to a better understanding of the molecular pathways that regulate the survival of injured RGCs. Here we discuss a variety of experimental strategies including intraocular delivery of neuroprotective molecules, viral-mediated gene transfer, cell implants and stem cell therapies, which share the ultimate goal of promoting RGC survival after optic nerve damage. The challenge now is to assess how this wealth of knowledge can be translated into viable therapies for the treatment of glaucoma and other optic neuropathies.


Assuntos
Glaucoma/tratamento farmacológico , Glaucoma/genética , Fármacos Neuroprotetores/uso terapêutico , Apoptose , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/fisiologia , Glaucoma/patologia , Glaucoma/fisiopatologia , Humanos , Fatores de Crescimento Neural/genética , Fatores de Crescimento Neural/fisiologia , Nervo Óptico/patologia , Células Ganglionares da Retina/patologia , Transdução de Sinais , Transplante de Células-Tronco
11.
J Biol Chem ; 283(43): 29156-65, 2008 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-18701465

RESUMO

Glaucoma is defined as a chronic and progressive optic nerve neuropathy, characterized by apoptosis of retinal ganglion cells (RGC) that leads to irreversible blindness. Ocular hypertension is a major risk factor, but in glaucoma RGC death can persist after ocular hypertension is normalized. To understand the mechanism underlying chronic RGC death we identified and characterized a gene product, alpha2-macroglobulin (alpha2M), whose expression is up-regulated early in ocular hypertension and remains up-regulated long after ocular hypertension is normalized. In ocular hypertension retinal glia up-regulate alpha2M, which binds to low-density lipoprotein receptor-related protein-1 receptors in RGCs, and is neurotoxic in a paracrine fashion. Neutralization of alpha2M delayed RGC loss during ocular hypertension; whereas delivery of alpha2M to normal eyes caused progressive apoptosis of RGC mimicking glaucoma without ocular hypertension. This work adds to our understanding of the pathology and molecular mechanisms of glaucoma, and illustrates emerging paradigms for studying chronic neurodegeneration in glaucoma and perhaps other disorders.


Assuntos
Glaucoma/metabolismo , alfa-Macroglobulinas/metabolismo , Animais , Morte Celular , Doença Crônica , Feminino , Hipertensão , Marcação In Situ das Extremidades Cortadas , Cinética , Microscopia Confocal , Modelos Biológicos , Doenças Neurodegenerativas/metabolismo , Nervo Óptico/patologia , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA