Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Biol Chem ; 285(5): 2959-67, 2010 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-19948736

RESUMO

NADPH oxidase comprises both cytosolic and membrane-bound subunits, which, when assembled and activated, initiate the transfer of electrons from NADPH to molecular oxygen to form superoxide. This activity, known as the respiratory burst, is extremely important in the innate immune response as indicated by the disorder chronic granulomatous disease. The regulation of this enzyme complex involves protein-protein and protein-lipid interactions as well as phosphorylation events. Previously, our laboratory demonstrated that the small membrane subunit of the oxidase complex, p22(phox), is phosphorylated in neutrophils and that its phosphorylation correlates with NADPH oxidase activity. In this study, we utilized site-directed mutagenesis in a Chinese hamster ovarian cell system to determine the phosphorylation sites within p22(phox). We also explored the mechanism by which p22(phox) phosphorylation affects NADPH oxidase activity. We found that mutation of threonine 147 to alanine inhibited superoxide production in vivo by more than 70%. This mutation also blocked phosphorylation of p22(phox) in vitro by both protein kinase C-alpha and -delta. Moreover, this mutation blocked the p22(phox)-p47(phox) interaction in intact cells. When phosphorylation was mimicked in vivo through mutation of Thr-147 to an aspartyl residue, NADPH oxidase activity was recovered, and the p22(phox)-p47(phox) interaction in the membrane was restored. Maturation of gp91(phox) was not affected by the alanine mutation, and phosphorylation of the cytosolic component p47(phox) still occurred. This study directly implicates threonine 147 of p22(phox) as a critical residue for efficient NADPH oxidase complex formation and resultant enzyme activity.


Assuntos
NADPH Oxidases/química , NADPH Oxidases/metabolismo , Treonina/química , Animais , Células CHO , Cricetinae , Cricetulus , Lipídeos/química , Lipoilação , Mutação , Fosforilação , Ligação Proteica , Mapeamento de Interação de Proteínas , Proteína Quinase C/metabolismo , Espécies Reativas de Oxigênio , Explosão Respiratória
2.
FASEB J ; 21(4): 1075-87, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17242159

RESUMO

The product of phospholipase D (PLD) enzymatic action in cell membranes, phosphatidic acid (PA), regulates kinases implicated in NADPH oxidase activation, as well as the mammalian target of rapamycin (mTOR) kinase. However, other protein targets for this lipid second messenger must exist in order to explain other key PA-mediated cellular functions. In this study, PA was found to specifically and saturably bind to and activate recombinant and immunoprecipitated endogenous ribosomal S6 kinase (S6K) with a stoichiometry of 94:1 lipid/protein. Polyphosphoinositides PI4-P and PI4,5P2 and cardiolipin could also bind to and activate S6K, albeit with different kinetics. Conversely, PA with at least one acyl side chain saturated (10:0) was ineffective in binding or activating the enzyme. Transfection of COS-7 cells with a wild-type myc-(pcDNA)-PLD2 construct resulted in high PLD activity, concomitantly with an increase in ribosomal p70S6K enzyme activity and phosphorylation in T389 and T421/S424 as well as phosphorylation of p70S6K's natural substrate S6 protein in S235/S236. Overexpression of a lipase inactive mutant (K758R), however, failed to induce an increase in both PLD and S6K activity or phosphorylation, indicating that the enzymatic activity of PLD2 (i.e., synthesis of PA) must be present to affect S6K. Neither inhibiting mTOR kinase activity with rapamycin nor silencing mTOR gene expression altered the augmentative effect of PLD2 exerted on p70S6K activity. This finding indicates that PA binds to and activates p70S6K, even in the absence of mTOR. Lastly, COS-7 transfection with PLD2 changed the pattern of subcellular expression, and a colocalization of S6K and PLD2 was observed by immunofluorescence microscopy. These results show for the first time a direct (mTOR-independent) participation of PLD in the p70S6K pathway and implicate PA as a nexus that brings together cell phospholipases and kinases.


Assuntos
Regulação Enzimológica da Expressão Gênica , Ácidos Fosfatídicos/metabolismo , Fosfolipase D/metabolismo , Proteínas Quinases/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Animais , Células COS , Chlorocebus aethiops , Ativação Enzimática , Humanos , Cinética , Lipídeos/química , Fosforilação , Ligação Proteica , Transdução de Sinais , Serina-Treonina Quinases TOR
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA