Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Curr Issues Mol Biol ; 46(1): 513-526, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38248335

RESUMO

The process of skin aging is intricate, involving intrinsic aging, influenced by internal factors, and extrinsic aging, mainly caused by exposure to UV radiation, resulting in photoaging. Photoaging manifests as skin issues such as wrinkles and discoloration. The skin microbiome, a diverse community of microorganisms on the skin's surface, plays a crucial role in skin protection and can be affected by factors like humidity and pH. Probiotics, beneficial microorganisms, have been investigated for their potential to enhance skin health by regulating the skin microbiome. This can be accomplished through oral probiotics, impacting the gut-skin axis, or topical applications introducing live bacteria to the skin. Probiotics mitigate oxidative stress, suppress inflammation, and maintain the skin's extracellular matrix, ultimately averting skin aging. However, research on probiotics derived from human skin is limited, and there is no established product for preventing photoaging. The mechanism by which probiotics shield the skin microbiome and skin layers from UV radiation remains unclear. Recently, researchers have discovered Lactobacillus in the skin, with reports indicating a decrease in this microorganism with age. In a recent study, scientists isolated Lactobacillus iners KOLBM20 from the skin of individuals in their twenties and confirmed its effectiveness. A comparative analysis of genetic sequences revealed that strain KOLBM20 belongs to the Lactobacillus genus and closely relates to L. iners DSM13335(T) with a 99.20% similarity. Importantly, Lactobacillus iners KOLBM20 displayed anti-wrinkle properties by inhibiting MMP-1. This investigation demonstrated the inhibitory effect of KOLBM20 strain lysate on MMP-1 expression. Moreover, the data suggest that KOLBM20 strain lysate may prevent UVB-induced MMP-1 expression by inhibiting the activation of the ERK, JNK, and p38 signaling pathways induced by UVB. Consequently, KOLBM20 strain lysate holds promise as a potential therapeutic agent for preventing and treating skin photoaging.

2.
Inorg Chem ; 63(2): 1414-1426, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38166391

RESUMO

Reevaluating the composition of the double metal cyanide catalyst (DMC) as a salt of (NC)6Co3- anions with 1:1 Zn2+/(X)Zn+ cations (X = Cl, RO, AcO), we prepared a series of well-defined DMCs, [ClZn+][Zn2+][(NC)6Co3-][ROH], [(RO)Zn+][Zn2+][(NC)6Co3-], [(AcO)Zn+][Zn2+][(NC)6Co3-], [(RO)Zn+]p[ClZn+](1-p)[Zn2+][(NC)6Co3-], [(AcO)Zn+]p[(tBuO)Zn+]q[Zn2+][(NC)6Co3-], and [(AcO)Zn+]p[(tBuO)Zn+]q[ClZn+]r[Zn2+][(NC)6Co3-]. The structure of [(MeOC3H6O)Zn+][Zn2+][(NC)6Co3-] was precisely determined at the atomic level through Rietveld refinement of the synchrotron X-ray powder diffraction data. By evaluating the catalyst's performance in both propylene oxide (PO) polymerization and PO/CO2 copolymerization, a correlation between structure and performance was established on various aspects including activity, dispersity, unsaturation level, and carbonate fraction in the resulting polyols. Ultimately, our study identified highly efficient catalysts that outperformed the state-of-the-art benchmark DMC not only in PO polymerization [DMC-(OAc/OtBu/Cl)(0.59/0.38/0.15)] but also in PO/CO2 copolymerization [DMC-(OAc/OtBu)(0.95/0.08)].

3.
J Am Chem Soc ; 144(35): 15911-15915, 2022 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-35938930

RESUMO

Synthetic biodegradable polyesters tend to undergo slow biodegradation under ambient natural conditions and, hence, have been rejected or even banned recently in ecofriendly applications. Here, we demonstrate the preparation of polyesters exhibiting enhanced biodegradability, which were generated through a combination of old controversial macromolecules and aggregate theories. H3PO4-catalyzed diacid/diol polycondensation afforded polyester chains bearing chain-end -CH2OP(O)(OH)2 and inner-chain (-CH2O)2P(O)(OH) groups, which were subsequently treated with M(2-ethylhexanoate)2 (M = Zn, Mg, Mn, and Ca) to form ionic aggregates of polyesters. The prepared ionic aggregates of polyesters, which were constructed with fertilizer ingredients (such as M2+ and phosphate), exhibit much faster biodegradability than that of the conventional polyesters under controlled soil conditions at 25 °C, while displaying comparable or superior rheological and mechanical properties.


Assuntos
Fertilizantes , Poliésteres , Íons , Poliésteres/metabolismo
4.
Molecules ; 26(4)2021 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-33671782

RESUMO

CrCl3(thf)3 is a common starting material in the synthesis of organometallic and coordination compounds of Cr. Deposited as an irregular solid with no possibility of recrystallization, it is not a purity guaranteed chemical, causing problems in some cases. In this work, we disclose a well-defined form of the THF adduct of CrCl3 ([CrCl2(µ-Cl)(thf)2]2), a crystalline solid, that enables structure determination by X-ray crystallography. The EA data and XRD pattern of the bulk agreed with the revealed structure. Moreover, its preparation procedure is facile: evacuation of CrCl3·6H2O at 100 °C, treatment with 6 equivalents of Me3SiCl in a minimal amount of THF, and crystallization from CH2Cl2. The ethylene tetramerization catalyst [iPrN{P(C6H4-p-Si(nBu)3)2}2CrCl2]+[B(C6F5)4]- prepared using well-defined [CrCl2(µ-Cl)(thf)2]2 as a starting material exhibited a reliably high activity (6600 kg/g-Cr/h; 1-octene selectivity at 40 °C, 75%), while that of the one prepared using the impure CrCl3(thf)3 was inconsistent and relatively low (~3000 kg/g-Cr/h). By using well-defined [CrCl2(µ-Cl)(thf)2]2 as a Cr source, single crystals of [(CH3CN)4CrCl2]+[B(C6F5)4]- and [{Et(Cl)Al(N(iPr)2)2}Cr(µ-Cl)]2 were obtained, allowing structure determination by X-ray crystallography, which had been unsuccessful when the previously known CrCl3(thf)3 was used as the Cr source.


Assuntos
Cromo/química , Complexos de Coordenação/química , Furanos/química , Complexos de Coordenação/síntese química , Cristalografia por Raios X , Modelos Moleculares , Estrutura Molecular
5.
Molecules ; 26(9)2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-34068755

RESUMO

Homogeneous olefin polymerization catalysts are activated in situ with a co-catalyst ([PhN(Me)2-H]+[B(C6F5)4]- or [Ph3C]+[B(C6F5)4]-) in bulk polymerization media. These co-catalysts are insoluble in hydrocarbon solvents, requiring excess co-catalyst (>3 eq.). Feeding the activated species as a solution in an aliphatic hydrocarbon solvent may be advantageous over the in situ activation method. In this study, highly pure and soluble ammonium tetrakis(pentafluorophenyl)borates ([Me(C18H37)2N-H]+[B(C6F5)4]- and [(C18H37)2NH2]+[B(C6F5)4]-) containing neither water nor Cl- salt impurities were prepared easily via the acid-base reaction of [PhN(Me)2-H]+[B(C6F5)4]- and the corresponding amine. Using the prepared ammonium salts, the activation reactions of commercial-process-relevant metallocene (rac-[ethylenebis(tetrahydroindenyl)]Zr(Me)2 (1-ZrMe2), [Ph2C(Cp)(3,6-tBu2Flu)]Hf(Me)2 (3-HfMe2), [Ph2C(Cp)(2,7-tBu2Flu)]Hf(Me)2 (4-HfMe2)) and half-metallocene complexes ([(η5-Me4C5)Si(Me)2(κ-NtBu)]Ti(Me)2 (5-TiMe2), [(η5-Me4C5)(C9H9(κ-N))]Ti(Me)2 (6-TiMe2), and [(η5-Me3C7H1S)(C10H11(κ-N))]Ti(Me)2 (7-TiMe2)) were monitored in C6D12 with 1H NMR spectroscopy. Stable [L-M(Me)(NMe(C18H37)2)]+[B(C6F5)4]- species were cleanly generated from 1-ZrMe2, 3-HfMe2, and 4-HfMe2, while the species types generated from 5-TiMe2, 6-TiMe2, and 7-TiMe2 were unstable for subsequent transformation to other species (presumably, [L-Ti(CH2N(C18H37)2)]+[B(C6F5)4]--type species). [L-TiCl(N(H)(C18H37)2)]+[B(C6F5)4]--type species were also prepared from 5-TiCl(Me) and 6-TiCl(Me), which were newly prepared in this study. The prepared [L-M(Me)(NMe(C18H37)2)]+[B(C6F5)4]--, [L-Ti(CH2N(C18H37)2)]+[B(C6F5)4]--, and [L-TiCl(N(H)(C18H37)2)]+[B(C6F5)4]--type species, which are soluble and stable in aliphatic hydrocarbon solvents, were highly active in ethylene/1-octene copolymerization performed in aliphatic hydrocarbon solvents.

6.
Molecules ; 24(9)2019 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-31035708

RESUMO

Pincer-type [Cnaphthyl, Npyridine, Namido]HfMe2 complex is a flagship among the post-metallocene catalysts. In this work, various pincer-type Hf-complexes were prepared for olefin polymerization. Pincer-type [Namido, Npyridine, Namido]HfMe2 complexes were prepared by reacting in situ generated HfMe4 with the corresponding ligand precursors, and the structure of a complex bearing 2,6-Et2C6H3Namido moieties was confirmed by X-ray crystallography. When the ligand precursors of [(CH3)R2Si-C5H3N-C(H)PhN(H)Ar (R = Me or Ph, Ar = 2,6-diisopropylphenyl) were treated with in situ generated HfMe4, pincer-type [Csilylmethyl, Npyridine, Namido]HfMe2 complexes were afforded by formation of Hf-CH2Si bond. Pincer-type [Cnaphthyl, Sthiophene, Namido]HfMe2 complex, where the pyridine moiety in the flagship catalyst was replaced with a thiophene unit, was not generated when the corresponding ligand precursor was treated with HfMe4. Instead, the [Sthiophene, Namido]HfMe3-type complex was obtained with no formation of the Hf-Cnaphthyl bond. A series of pincer-type [Cnaphthyl, Npyridine, Nalkylamido]HfMe2 complexes was prepared where the arylamido moiety in the flagship catalyst was replaced with alkylamido moieties (alkyl = iPr, cyclohexyl, tBu, adamantyl). Structures of the complexes bearing isopropylamido and adamantylamido moieties were confirmed by X-ray crystallography. Most of the complexes cleanly generated the desired ion-pair complexes when treated with an equivalent amount of [(C18H37)2N(H)Me]+[B(C6F5)4]-, which showed negligible activity in olefin polymerization. Some complexes bearing bulky substituents showed moderate activities, even though the desired ion-pair complexes were not cleanly afforded.


Assuntos
Alcenos/química , Háfnio/química , Polímeros/química , Catálise , Cristalografia por Raios X , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Estrutura Molecular , Polimerização , Polímeros/síntese química
7.
J Comput Chem ; 39(23): 1854-1867, 2018 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-29888522

RESUMO

Model catalysts for CO2 /epoxide copolymerization based on Co(III) complexes were studied, with focus on the preference of their alternative isomers, cisß vs. trans. The systems range from model structures without the co-catalyst, as derived from crystallographic data, to complex models with two (CH2 )4 N+ R3 co-catalyst chains (R = Me, Bu) grafted onto a Co(III)-salcy core. To explore the conformational space of the latter complexes, a computational protocol was developed, combining a systematic model-building approach with static and molecular dynamics calculations, and multilevel energy assessment (PM7 and DFT). Results demonstrate an influence of the co-catalyst on the relative stability of the isomers. The cisß isomer is preferred for complexes without N+ -chains and the cisß â†” trans isomerization is feasible. Five-coordinate species and open-shell electronic configurations are energetically disfavored. The cisß preference decreases with the introduction and enlargement of (CH2 )4 N+ R3 : both isomers can be populated for R = Me, while the trans isomer is visibly preferred for R = Bu. © 2018 Wiley Periodicals, Inc.

8.
Molecules ; 22(2)2017 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-28208780

RESUMO

The Me2Si-bridged ansa-Cp/amido half-metallocene, [Me2Si(η5-Me4C5)(NtBu)]TiCl2, termed a "constrained-geometry catalyst (CGC)", is a representative homogeneous Ziegler catalyst. CGC derivatives with the [1,2]azasilinane framework, in which the amide alkyl substituent is joined by the Si-bridge, were prepared, and the catalytic performances of these species was studied. Me4C5HSi(Me)(CH2CH=CH2)-NH(C(R)(R')CH=CH2) (R, R' = H or methyl; Me4C5H = tetramethylcyclopentadienyl) was susceptible to ring closure metathesis (RCM) when treated with Schrock's Mo-catalyst to afford -Si(Me4C5H)(Me)CH2CH=CHC(R)(R')NH- containing a six-membered ring framework. Using the precursors and the products of RCM, various CGC derivatives, i.e., [-Si(η5-Me4C5)(Me)CH2CH=CHC(R)(H)N-]TiMe2 (13, R = H; 15, R = Me), [-Si(η5-Me4C5)(Me)CH2CH2CH2CH2N]TiMe2 (14), [(η5-Me4C5)Si(Me)(CH2CH=CH2)NCH2CH=CH2]TiMe2 (16), [(η5-Me4C5)Si (Me)(CH=CH2)NCH2CH=CH2]TiMe2 (17), and [(η5-Me4C5)Si(Me)(CH2CH3)NCH2CH2CH3]TiMe2 (18), were prepared. The catalytic activity of the newly prepared complexes was lower than that of CGC when activated with [Ph3C][B(C6F5)4]/iBu3Al. However, the catalytic activity of these species was improved by using tetrabutylaluminoxane ([iBu2Al]2O) instead of iBu3Al and the activity of 14/[Ph3C][B(C6F5)4]/[iBu2Al]2O was comparable to that of CGC/[Ph3C][B(C6F5)4]/iBu3Al (4.7 and 5.0 × 106 g/mol-Ti, respectively). Advantageously, the newly prepared complexes produced higher molecular weight poly(ethylene-co-1-octene)s than CGC.


Assuntos
Alcenos/química , Etilenos/química , Polímeros/química , Titânio/química , Varredura Diferencial de Calorimetria , Estrutura Molecular , Polimerização , Polímeros/síntese química
9.
Beilstein J Org Chem ; 10: 1787-95, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25161738

RESUMO

The (salen)Co(III) complex 1 tethering four quaternary ammonium salts, which is a highly active catalyst in CO2/epoxide copolymerizations, shows high activity for propylene oxide/phthalic anhydride (PO/PA) copolymerizations and PO/CO2/PA terpolymerizations. In the PO/PA copolymerizations, full conversion of PA was achieved within 5 h, and strictly alternating copolymers of poly(1,2-propylene phthalate)s were afforded without any formation of ether linkages. In the PO/CO2/PA terpolymerizations, full conversion of PA was also achieved within 4 h. The resulting polymers were gradient poly(1,2-propylene carbonate-co-phthalate)s because of the drift in the PA concentration during the terpolymerization. Both polymerizations showed immortal polymerization character; therefore, the molecular weights were determined by the activity (g/mol-1) and the number of chain-growing sites per 1 [anions in 1 (5) + water (present as impurity) + ethanol (deliberately fed)], and the molecular weight distributions were narrow (M w/M n, 1.05-1.5). Because of the extremely high activity of 1, high-molecular-weight polymers were generated (M n up to 170,000 and 350,000 for the PO/PA copolymerization and PO/CO2/PA terpolymerization, respectively). The terpolymers bearing a substantial number of PA units (f PA, 0.23) showed a higher glass-transition temperature (48 °C) than the CO2/PO alternating copolymer (40 °C).

10.
Polymers (Basel) ; 16(4)2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38399897

RESUMO

Poly(1,4-butylene succinate) (PBS) is a promising sustainable and biodegradable synthetic polyester. In this study, we synthesized PBS-based copolyesters by incorporating 5-20 mol% of -O2CC6H4CO2- and -OCH2CH2O- units through the polycondensation of succinic acid (SA) with 1,4-butanediol (BD) and bis(2-hydroxyethyl) terephthalate (BHET). Two different catalysts, H3PO4 and the conventional catalyst (nBuO)4Ti, were used comparatively in the synthesis process. The copolyesters produced using the former were treated with M(2-ethylhexanoate)2 (M = Mg, Zn, Mn) to connect the chains through ionic interactions between M2+ ions and either -CH2OP(O)(OH)O- or (-CH2O)2P(O)O- groups. By incorporating BHET units (i.e., -O2CC6H4CO2- and -OCH2CH2O-), the resulting copolyesters exhibited improved ductile properties with enhanced elongation at break, albeit with reduced tensile strength. The copolyesters prepared with H3PO4/M(2-ethylhexanoate)2 displayed a less random distribution of -O2CC6H4CO2- and -OCH2CH2O- units, leading to a faster crystallization rate, higher Tm value, and higher yield strength compared to those prepared with (nBuO)4Ti using the same amount of BHET. Furthermore, they displayed substantial shear-thinning behavior in their rheological properties due to the presence of long-chain branches of (-CH2O)3P=O units. Unfortunately, the copolyesters prepared with H3PO4/M(2-ethylhexanoate)2, and hence containing M2+, -CH2OP(O)(OH)O-, (-CH2O)2P(O)O- groups, did not exhibit enhanced biodegradability under ambient soil conditions.

11.
RSC Adv ; 14(7): 4702-4716, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38318613

RESUMO

Polylactic acid (PLA) stands as a promising material, sourced from renewables and exhibiting biodegradability-albeit under stringent industrial composting settings. A primary challenge impeding PLA's broad applications is its inherent brittleness, as it fractures with minimal elongation despite its commendable tensile strength. A well-established remedy involves blending PLA with plasticizers. In this study, a range of organic carbonates-namely, 4-ethoxycarbonyloximethyl-[1,3]dioxolan-2-one (1), 4-methoxycarbonyloximethyl-[1,3]dioxolan-2-one (2), glycerol carbonate (3), and glycerol 1-acetate 2,3-carbonate (4)-were synthesized on a preparative scale (∼100 g), using renewable glycerol and CO2-derived diethyl carbonate (DEC) or dimethyl carbonate (DMC). Significantly, 1-4 exhibited biodegradability under ambient conditions within a week, ascertained through soil exposure at 25 °C-outpacing the degradation of comparative cellulose. Further investigations revealed 1's efficacy as a PLA plasticizer. Compatibility with PLA, up to 30 phr (parts per hundred resin), was verified using an array of techniques, including DSC, DMA, SEM, and rotational rheometry. The resulting blends showcased enhanced ductility, evident from tensile property measurements. Notably, the novel plasticizer 1 displayed an advantage over conventional acetyltributylcitrate (ATBC) in terms of morphological stability. Slow crystallization, observed in PLA/ATBC blends over time at room temperature, was absent in PLA/1 blends, preserving amorphous domain dimensions and mitigating plasticizer migration-confirmed through DMA assessments of aged and unaged specimens. Nevertheless, biodegradation assessments of the blends revealed that the biodegradable organic carbonate plasticizers did not augment PLA's biodegradation. The PLA in the blends remained mostly unchanged under ambient soil conditions of 25 °C over a 6 month period. This work underscores the potential of organic carbonates as both eco-friendly plasticizers for PLA and as biodegradable compounds, contributing to the development of environmentally conscious polymer systems.

12.
Anal Biochem ; 421(2): 776-8, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22037468

RESUMO

Highly stable enzyme coaggregates were developed using amyloid fibrils as support materials. Amyloid fibril formation was induced by ionic liquids, and immobilization was done by the coaggregation of enzymes and amyloid fibrils followed by chemical cross-linking. Transmission and scanning electron microscopy studies were carried out to characterize the coaggregates. The amyloid fibril-linked enzymes showed significantly increased stability against various deactivating conditions. In addition, a high level of reusability was clearly observed. This study clearly demonstrated that amyloid fibrils can be used as biomaterials for enzyme immobilization and that amyloid fibril-linked enzyme coaggregates have good potential for industrial applications.


Assuntos
Amiloide/química , Enzimas Imobilizadas/química , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão
13.
ACS Omega ; 7(50): 46849-46858, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36570214

RESUMO

Grignard reagents featuring carbanion characteristics are mostly unreactive toward alkyl halides and require a catalyst for the coupling reaction. With the need to prepare p-(CH2=CH)C6H4CH2CH2CH2Cl on a large scale, the coupling reaction of p-(CH2=CH)C6H4MgCl with BrCH2CH2CH2Cl was attempted to screen the catalysts, and CuCN was determined to be the best catalyst affording the desired compound in 80% yield with no formation of Wurtz coupling side product CH2=CHC6H4-C6H4CH=CH2. The p-(CH2=CH)C6H4Cu(CN)MgCl species was proposed as an intermediate based on the X-ray structure of PhCu(CN)Mg(THF)4Cl. p-ClC6H4MgCl did not react with sterically encumbered R3SiCl (R = n-Bu or n-octyl). However, the reaction took place with the addition of 3 mol % CuCN catalyst, affording the desired compound p-ClC6H4SiR3. The structures of p-(CH2=CH)C6H4CH2CH2CH2MgCl and p-ClC6H4MgCl were also elucidated, which existed as an aggregate with MgCl2, suggesting that some portion of the Grignard reagents were possibly lost in the coupling reaction due to coprecipitation with the byproduct MgCl2. R3SiCl (R = n-Bu or n-octyl) was also prepared easily and economically with no formation of R4Si when SiCl4 was reacted with 4 equiv of RMgCl. Using the developed syntheses, [p-(CH2=CH)C6H4CH2CH2CH2]2Zn and iPrN[P(C6H4-p-SiR3)2]2, which are potentially useful compounds for the production of PS-block-PO-block-PS and 1-octene, respectively, were efficiently synthesized with substantial cost reductions.

14.
Dalton Trans ; 51(43): 16620-16627, 2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36268818

RESUMO

Zinc-glutarate (ZnGA) is a promising catalyst that can form polymers from CO2 and epoxides, thereby contributing to the development of CO2 utilization technologies and future sustainability. One of the obstacles to commercializing ZnGA in polymer industries is its low catalytic activity. In this study, we introduced activated two-dimensional (2D) ZnGA to improve its catalytic activity in polymerization. The morphology-controlled 2D ZnGA was treated with H3Co(CN)6, and a porous granular-type Co-modified ZnGA (Co-ZnGA) was prepared. The morphology of 2D ZnGA is a prerequisite for the activation by H3Co(CN)6. The catalytic properties of Co-ZnGA were evaluated by copolymerization of various epoxides and CO2, and exhibited catalytic activity of 855, 1540, 1190, and 148 g g-cat-1 with propylene oxide, 1,2-epoxyhexane, 1,2-epoxybutane, and styrene oxide, respectively. This study provided a new strategy using 2D ZnGA instead of conventional ZnGA for increasing the catalytic activity in CO2 polymerization.

15.
Anal Biochem ; 419(2): 354-6, 2011 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-21875570

RESUMO

Amyloid fibrils are highly organized protein filaments that can be used as novel biomaterials. In this study, we show that proteins could be selectively induced to form amyloid fibrils at room temperature by the introduction of imidazolium salts, which could trigger the self-assembly process with their hydrophobic and ionic properties.


Assuntos
Amiloide/metabolismo , Imidazóis/química , Líquidos Iônicos/química , Lactalbumina/metabolismo , Lactalbumina/ultraestrutura
16.
J Mol Model ; 26(6): 113, 2020 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-32378131

RESUMO

The preference of open chain of growing macromolecule vs. possible cyclic form was examined for the bifunctional cobalt(III)-salen catalyst for the copolymerization of CO2 with epoxides. A variety of possible isomers was considered (resulting from trans/cis-ß salen arrangement, different mutual orientation of quaternary ammonium-chains, and possible binding modes). To explore the conformational space, a combined approach was applied, utilizing semiempirical (PM7) MD and the DFT calculations. The preference of the open and cyclic macromolecules attached to the metal center was compared with the corresponding results for isolated model macromolecules, and the systems built of the macromolecule interacting with the tetra-butyl ammonium cation. Result shows that the cyclic structures are strongly preferred for isolated ions, with relatively low cyclization barriers. In the field of positive point charge, the open structures are strongly preferred. For the ions interacting with tetrabutyl ammonium cation, the cyclic structures are preferred, due to delocalization of the positive charge in the cation. For the complexes involving model and "real" Co(III)-salen catalysts, the open structures are strongly preferred. The possible cyclization by dissociation of alkoxide and its transfer to the neighborhood of quaternary ammonium cation is characterized by high activation barriers. Further, the transfer of alkoxide from the metal center to the cation is less likely than the transfer of carbonate, since the metal-alkoxide bond-energy energy is much stronger than energy of metal-carbonate bonding, as shown by ETS-NOCV results. The conclusions are in qualitative agreement with experimental data showing high selectivity towards copolymer formation in the copolymerization processes catalyzed by bifunctional Co(III) salen-complexes. Graphical abstract.

17.
Polymers (Basel) ; 12(10)2020 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-32993178

RESUMO

In this work, we prepared fluorescently labeled poly(ε-caprolactone-ran-lactic acid) (PCLA-F) as a biomaterial to fabricate three-dimensional (3D) scaffolds via salt leaching and 3D printing. The salt-leached PCLA-F scaffold was fabricated using NaCl and methylene chloride, and it had an irregular, interconnected 3D structure. The printed PCLA-F scaffold was fabricated using a fused deposition modeling printer, and it had a layered, orthogonally oriented 3D structure. The printed scaffold fabrication method was clearly more efficient than the salt leaching method in terms of productivity and repeatability. In the in vivo fluorescence imaging of mice and gel permeation chromatography of scaffolds removed from rats, the salt-leached PCLA scaffolds showed slightly faster degradation than the printed PCLA scaffolds. In the inflammation reaction, the printed PCLA scaffolds induced a slightly stronger inflammation reaction due to the slower biodegradation. Collectively, we can conclude that in vivo biodegradability and inflammation of scaffolds were affected by the scaffold fabrication method.

18.
Antioxidants (Basel) ; 9(11)2020 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-33202630

RESUMO

Chemically synthesized retinyl palmitate has been widely used in the cosmetic and biotechnology industry. In this study, we aimed to demonstrate the microbial production of retinyl palmitate and the benefits of microbial retinyl palmitate in skin physiology. A heterologous retinyl palmitate biosynthesis pathway was reconstructed in metabolically engineered Escherichia coli using synthetic expression modules from Pantoea agglomerans, Salinibacter ruber, and Homo sapiens. High production of retinyl palmitate (69.96 ± 2.64 mg/L) was obtained using a fed-batch fermentation process. Moreover, application of purified microbial retinyl palmitate to human foreskin HS68 fibroblasts led to increased cellular retinoic acid-binding protein 2 (CRABP2) mRNA level [1.7-fold (p = 0.001) at 100 µg/mL], acceleration of cell proliferation, and enhancement of procollagen synthesis [111% (p < 0.05) at 100 µg/mL], strongly indicating an anti-ageing-related effect of this substance. These results would pave the way for large-scale production of retinyl palmitate in microbial systems and represent the first evidence for the application of microbial retinyl palmitate as a cosmeceutical.

19.
Polymers (Basel) ; 12(5)2020 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-32403453

RESUMO

The pyridylamido hafnium complex (I) discovered at Dow is a flagship catalyst among postmetallocenes, which are used in the polyolefin industry for PO-chain growth from a chain transfer agent, dialkylzinc. In the present work, with the aim to block a possible deactivation process in prototype compound I, the corresponding derivatives were prepared. A series of pyridylamido Hf complexes were prepared by replacing the 2,6-diisopropylphenylamido part in I with various 2,6-R2C6H3N-moieties (R = cycloheptyl, cyclohexyl, cyclopentyl, 3-pentyl, ethyl, or Ph) or by replacing 2-iPrC6H4C(H)- in I with the simple PhC(H)-moiety. The isopropyl substituent in the 2-iPrC6H4C(H)-moiety influences not only the geometry of the structures (revealed by X-ray crystallography), but also catalytic performance. In the complexes bearing the 2-iPrC6H4C(H)-moiety, the chelation framework forms a plane; however, this framework is distorted in the complexes containing the PhC(H)-moiety. The ability to incorporate α-olefin decreased upon replacing 2-iPrC6H4C(H)-with the PhC(H)-moiety. The complexes carrying the 2,6-di(cycloheptyl)phenylamido or 2,6-di(cyclohexyl)phenylamido moiety (replacing the 2,6-diisopropylphenylamido part in I) showed somewhat higher activity with greater longevity than did prototype catalyst I.

20.
Polymers (Basel) ; 12(3)2020 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-32131422

RESUMO

Polyolefins (POs) are the most abundant polymers. However, synthesis of PO-based block copolymers has only rarely been achieved. We aimed to synthesize various PO-based block copolymers by coordinative chain transfer polymerization (CCTP) followed by anionic polymerization in one-pot via conversion of the CCTP product (polyolefinyl)2Zn to polyolefinyl-Li. The addition of 2 equiv t-BuLi to (1-octyl)2Zn (a model compound of (polyolefinyl)2Zn) and selective removal or decomposition of (tBu)2Zn by evacuation or heating at 130 °C afforded 1-octyl-Li. Attempts to convert (polyolefinyl)2Zn to polyolefinyl-Li were unsuccessful. However, polystyrene (PS) chains were efficiently grown from (polyolefinyl)2Zn; the addition of styrene monomers after treatment with t-BuLi and pentamethyldiethylenetriamine (PMDTA) in the presence of residual olefin monomers afforded PO-block-PSs. Organolithium species that might be generated in the pot of t-BuLi, PMDTA, and olefin monomers, i.e., [Me2NCH2CH2N(Me)CH2CH2N(Me)CH2Li, Me2NCH2CH2N(Me)Li·(PMDTA), pentylallyl-Li⋅(PMDTA)], as well as PhLi⋅(PMDTA), were screened as initiators to grow PS chains from (1-hexyl)2Zn, as well as from (polyolefinyl)2Zn. Pentylallyl-Li⋅(PMDTA) was the best initiator. The Mn values increased substantially after the styrene polymerization with some generation of homo-PSs (27-29%). The Mn values of the extracted homo-PS suggested that PS chains were grown mainly from polyolefinyl groups in [(polyolefinyl)2(pentylallyl)Zn]-[Li⋅(PMDTA)]+ formed by pentylallyl-Li⋅(PMDTA) acting onto (polyolefinyl)2Zn.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA