Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant J ; 117(3): 747-765, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37926922

RESUMO

Brassinazole Resistant 1 (BZR1) and bri1 EMS Suppressor 1 (BES1) are key transcription factors that mediate brassinosteroid (BR)-responsive gene expression in Arabidopsis. The BZR1/BES1 family is composed of BZR1, BES1, and four BES1/BZR1 homologs (BEH1-BEH4). However, little is known about whether BEHs are regulated by BR signaling in the same way as BZR1 and BES1. We comparatively analyzed the functional characteristics of six BZR1/BES1 family members and their regulatory mechanisms in BR signaling using genetic and biochemical analyses. We also compared their subcellular localizations regulated by the phosphorylation status, interaction with GSK3-like kinases, and heterodimeric combination. We found that all BZR1/BES1 family members restored the phenotypic defects of bri1-5 by their overexpression. Unexpectedly, BEH2-overexpressing plants showed the most distinct phenotype with enhanced BR responses. RNA-Seq analysis indicated that overexpression of both BZR1 and BEH2 regulates BR-responsive gene expression, but BEH2 has a much greater proportion of BR-independent gene expression than BZR1. Unlike BZR1 and BES1, the BR-regulated subcellular translocation of the four BEHs was not tightly correlated with their phosphorylation status. Notably, BEH1 and BEH2 are predominantly localized in the nucleus, which induces the nuclear accumulation of other BZR1/BES1 family proteins through heterodimerization. Altogether, our comparative analyses suggest that BEH1 and BEH2 play an important role in the functional interaction between BZR1/BES1 family transcription factors.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Triazóis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Brassinosteroides/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica de Plantas , Quinase 3 da Glicogênio Sintase/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
2.
Plant Cell ; 31(9): 2223-2240, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31320482

RESUMO

Cuticular waxes, which cover the aboveground parts of land plants, are essential for plant survival in terrestrial environments. However, little is known about the regulatory mechanisms underlying cuticular wax biosynthesis in response to changes in ambient humidity. Here, we report that the Arabidopsis (Arabidopsis thaliana) Kelch repeat F-box protein SMALL AND GLOSSY LEAVES1 (SAGL1) mediates proteasome-dependent degradation of ECERIFERUM3 (CER3), a biosynthetic enzyme involved in the production of very long chain alkanes (the major components of wax), thereby negatively regulating cuticular wax biosynthesis. Disruption of SAGL1 led to severe growth retardation, enhanced drought tolerance, and increased wax accumulation in stems, leaves, and roots. Cytoplasmic SAGL1 physically interacts with CER3 and targets it for degradation. ß­glucuronidase (GUS) expression was observed in the roots of pSAGL1:GUS plants but was barely detected in aerial organs. High humidity-induced GUS activity and SAGL1 transcript levels were reduced in response to abscisic acid treatment and water deficit. SAGL1 levels increase under high humidity, and the stability of this protein is regulated by the 26S proteasome. These findings indicate that the SAGL1-CER3 module negatively regulates cuticular wax biosynthesis in Arabidopsis in response to changes to humidity, and they highlight the importance of permeable cuticle formation in terrestrial plants under high humidity conditions.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Carbono-Carbono Liases/metabolismo , Proteínas F-Box/metabolismo , Umidade , Ceras/metabolismo , Ácido Abscísico/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Carbono-Carbono Liases/genética , Parede Celular/ultraestrutura , Clonagem Molecular , Secas , Proteínas F-Box/genética , Regulação da Expressão Gênica de Plantas , Lipídeos de Membrana/metabolismo , Mutação , Epiderme Vegetal/metabolismo , Folhas de Planta/metabolismo , Caules de Planta/ultraestrutura , Plantas Geneticamente Modificadas , Sais/metabolismo , Plântula , Nicotiana
3.
Plant Physiol ; 184(2): 1097-1111, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32732349

RESUMO

Cold stress is a major environmental stress that severely affects plant growth and crop productivity. Arabidopsis (Arabidopsis thaliana) HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENE15 (HOS15) is a substrate receptor of the CULLIN4-based CLR4 ubiquitin E3 ligase complex, which epigenetically regulates cold tolerance by degrading HISTONE DEACETYLASE2C (HD2C) to switch from repressive to permissive chromatin structure in response to cold stress. In this study, we characterized a HOS15-binding protein, POWERDRESS (PWR), and analyzed its function in the cold stress response. PWR loss-of-function plants (pwr) showed lower expression of cold-regulated (COR) genes and sensitivity to freezing. PWR interacts with HD2C through HOS15, and cold-induced HD2C degradation by HOS15 is diminished in the pwr mutant. The association of HOS15 and HD2C to promoters of cold-responsive COR genes was dependent on PWR. Consistent with these observations, the high acetylation levels of histone H3 by cold-induced and HOS15-mediated HD2C degradation were significantly reduced in pwr under cold stress. PWR also interacts with C-repeat element-binding factor transcription factors to modulate their cold-induced binding to the promoter of COR genes. Collectively, our data signify that the PWR-HOS15-HD2C histone-modifying complex regulates the expression of COR genes and the freezing tolerance of plants.


Assuntos
Arabidopsis/genética , Arabidopsis/metabolismo , Resposta ao Choque Frio/genética , Resposta ao Choque Frio/fisiologia , Epigênese Genética , Histonas/genética , Histonas/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Genótipo , Mutação
4.
Proc Natl Acad Sci U S A ; 115(23): E5400-E5409, 2018 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-29784800

RESUMO

Switching from repressed to active status in chromatin regulation is part of the critical responses that plants deploy to survive in an ever-changing environment. We previously reported that HOS15, a WD40-repeat protein, is involved in histone deacetylation and cold tolerance in Arabidopsis However, it remained unknown how HOS15 regulates cold responsive genes to affect cold tolerance. Here, we show that HOS15 interacts with histone deacetylase 2C (HD2C) and both proteins together associate with the promoters of cold-responsive COR genes, COR15A and COR47 Cold induced HD2C degradation is mediated by the CULLIN4 (CUL4)-based E3 ubiquitin ligase complex in which HOS15 acts as a substrate receptor. Interference with the association of HD2C and the COR gene promoters by HOS15 correlates with increased acetylation levels of histone H3. HOS15 also interacts with CBF transcription factors to modulate cold-induced binding to the COR gene promoters. Our results here demonstrate that cold induces HOS15-mediated chromatin modifications by degrading HD2C. This switches the chromatin structure status and facilitates recruitment of CBFs to the COR gene promoters. This is an apparent requirement to acquire cold tolerance.


Assuntos
Proteínas de Arabidopsis/metabolismo , Cromatina/metabolismo , Cromatina/fisiologia , Proteínas Cromossômicas não Histona/metabolismo , Acetilação , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas Cromossômicas não Histona/genética , Temperatura Baixa , Resposta ao Choque Frio/genética , Resposta ao Choque Frio/fisiologia , Epigênese Genética/genética , Epigenômica/métodos , Regulação da Expressão Gênica de Plantas/genética , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Histonas/metabolismo , Regiões Promotoras Genéticas/genética , Processamento de Proteína Pós-Traducional , Fatores de Transcrição/metabolismo
5.
Sensors (Basel) ; 20(9)2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32392780

RESUMO

We propose a nanometer-scale displacement or vibration measurement system, using an optical quadrature interferometer and the post-processing technique that extracts the parameters necessary for characterizing the interferometric system. Using a 3 × 3 fiber-optic coupler, the entire complex interference signal could be reconstructed with two interference signals measured at two return ports of the coupler. The intrinsic phase difference between the return ports was utilized to obtain the quadratic part of the interference signal, which allowed one to reconstruct the entire complex interference signal. However, the two measured signals were appreciably affected by the unequal detector gains and non-uniform intrinsic phases of the coupler. Fortunately, we could find that the Lissajous curve plotted by the two signals of the interferometric system would form an ellipse. Therefore, by fitting the measured Lissajous curve to an ellipse, we could extract the parameters characterizing the actual system, which allowed the nanometer-scale measurement. Experimental results showed that a 20 kHz sinusoidal vibration with an amplitude of 1.5 nm could be measured with a standard deviation of 0.4 nm.

6.
Int J Mol Sci ; 21(22)2020 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-33202909

RESUMO

The current agricultural system is biased for the yield increase at the cost of biodiversity. However, due to the loss of precious genetic diversity during domestication and artificial selection, modern cultivars have lost the adaptability to cope with unfavorable environments. There are many reports on variations such as single nucleotide polymorphisms (SNPs) and indels in the stress-tolerant gene alleles that are associated with higher stress tolerance in wild progenitors, natural accessions, and extremophiles in comparison with domesticated crops or model plants. Therefore, to gain a better understanding of stress-tolerant traits in naturally stress-resistant plants, more comparative studies between the modern crops/model plants and crop progenitors/natural accessions/extremophiles are required. In this review, we discussed and summarized recent progress on natural variations associated with enhanced abiotic stress tolerance in various plants. By applying the recent biotechniques such as the CRISPR/Cas9 gene editing tool, natural genetic resources (i.e., stress-tolerant gene alleles) from diverse plants could be introduced to the modern crop in a non-genetically modified way to improve stress-tolerant traits.


Assuntos
Sistemas CRISPR-Cas , Produtos Agrícolas , Edição de Genes , Genoma de Planta , Plantas Geneticamente Modificadas , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento
7.
Int J Mol Sci ; 21(5)2020 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-32150906

RESUMO

Low-oxygen stress, mainly caused by soil flooding, is a serious abiotic stress affecting crop productivity worldwide. To understand the mechanisms of low-oxygen stress responses and adaptation of plants, we characterized and compared low-oxygen responses in six species with different accessions of the Brassicaceae family. Based on the growth and survival responses to submergence or low-oxygen condition, these accessions could be divided into three groups: (i) Highly tolerant species (Rorippa islandica and Arabis stelleri); (ii) moderately tolerant species (Arabidopsis thaliana [esk-1, Ler, Ws and Col-0 ecotype]); and (iii) intolerant species (Thlaspi arvense, Thellungiella salsuginea [Shandong and Yukon ecotype], and Thellungiella parvula). Gene expression profiling using Operon Arabidopsis microarray was carried out with RNA from roots of A. thaliana (Col-0), A. stelleri, R. islandica, and T. salsuginea (Shandong) treated with low-oxygen stress (0.1% O2/99.9% N2) for 0, 1, 3, 8, 24, and 72 h. We performed a comparative analysis of the gene expression profiles using the gene set enrichment analysis (GSEA) method. Our comparative analysis suggested that under low-oxygen stress each species distinctively reconfigures the energy metabolic pathways including sucrose-starch metabolism, glycolysis, fermentation and nitrogen metabolism, tricarboxylic acid flow, and fatty acid degradation via beta oxidation and glyoxylate cycle. In A. thaliana, a moderately tolerant species, the dynamical reconfiguration of energy metabolisms occurred in the early time points of low-oxygen treatment, but the energy reconfiguration in the late time points was not as dynamic as in the early time points. Highly tolerant A. stelleri appeared to have high photosynthesis capacity that could produce more O2 and in turn additional ATP energy to cope with energy depletion caused by low-oxygen stress. R. islandica seemed to retain some ATP energy produced by anaerobic energy metabolism during a prolonged period of low-oxygen conditions. Intolerant T. salsuginea did not show significant changes in the expression of genes involved in anaerobic energy metabolisms. These results indicate that plants developed different energy metabolisms to cope with the energy crisis caused by low-oxygen stress.


Assuntos
Adaptação Fisiológica , Brassicaceae/metabolismo , Metabolismo Energético/genética , Oxigênio/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Estresse Fisiológico , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Brassicaceae/genética , Brassicaceae/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Transcriptoma
8.
Plant Mol Biol ; 99(1-2): 135-148, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30542810

RESUMO

KEY MESSAGE: A Kelch repeat F-box containing protein, SMALL AND GLOSSY LEAVES1 (SAGL1) regulates phenylpropanoid biosynthesis as a post-translational regulator for PAL1 (phenylalanine ammonia-lyase) and an indirect transcriptional regulator for ANTHOCYANIDIN SYNTHASE. Phenylpropanoid biosynthesis in plants produces diverse aromatic metabolites with important biological functions. Phenylalanine ammonia-lyase (PAL) catalyzes the first step in phenylpropanoid biosynthesis by converting L-phenylalanine to trans-cinnamic acid. Here, we report that SMALL AND GLOSSY LEAVES1 (SAGL1), a Kelch repeat F-box protein, interacts with PAL1 protein for proteasome-mediated degradation to regulate phenylpropanoid biosynthesis in Arabidopsis. Mutations in SAGL1 caused high accumulation of anthocyanins and lignin derived from the phenylpropanoid biosynthesis pathway. We found that PAL enzyme activity increased in SAGL1-defective mutants, sagl1, but decreased in SAGL1-overexpressing Arabidopsis (SAGL1OE) without changes in the transcript levels of PAL genes, suggesting protein-level regulation by SAGL1. Indeed, the levels of PAL1-GFP fusion protein were reduced when both SAGL1 and PAL1-GFP were transiently co-expressed in leaves of Nicotiana benthamiana. In addition, bimolecular fluorescence complementation analysis suggested an interaction between SAGL1 and PAL1. We also found that the transcript levels of ANTHOCYANIDIN SYNTHASE (ANS) increased in the sagl1 mutants but decreased in SAGL1OE. Our results suggest that SAGL1 regulates phenylpropanoid biosynthesis post-translationally at PAL1 and transcriptionally at ANS.


Assuntos
Antocianinas/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas F-Box/metabolismo , Regulação da Expressão Gênica de Plantas , Lignina/metabolismo , Propanóis/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas F-Box/genética , Expressão Gênica , Perfilação da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Repetição Kelch , Mutação , Oxigenases/genética , Oxigenases/metabolismo , Fenilalanina Amônia-Liase/genética , Fenilalanina Amônia-Liase/metabolismo , Filogenia , Nicotiana/genética , Nicotiana/metabolismo
9.
Opt Lett ; 44(10): 2590-2593, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-31090739

RESUMO

A noncontact photoacoustic imaging method based on optical quadrature detection is proposed. The photo-induced acoustic signal is detected by an optical method without contacting the specimen. By utilizing the intrinsic phase difference of a multiport optical interferometer, the quadrature signal of a conventional interferometric signal could be obtained. With this quadratic signal pair, we could reconstruct the photoacoustic signal without suffering from the initial phase drift that usually occurs in a conventional interferometric system. The performance of the proposed system is verified by imaging human hairs embedded in a polydimethylsiloxane resin block. The system's lateral and axial resolutions are measured to be 84 and 86 µm at a 1.5 mm depth of a PDMS resin block, respectively. The experimental result is good enough to distinguish the hairs staggered in depth.

10.
Microb Cell Fact ; 18(1): 20, 2019 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-30704481

RESUMO

BACKGROUND: Long-chain free fatty acids (FFAs) are a type of backbone molecule that can react with alcohol to produce biodiesels. Various microorganisms have become potent producers of FFAs. Efforts have focused on increasing metabolic flux to the synthesis of either neutral fat or fatty acyl intermediates attached to acyl carrier protein (ACP), which are the source of FFAs. Membrane lipids are also a source of FFAs. As an alternative way of producing FFAs, exogenous phospholipase may be used after heterologous production and localization in the periplasmic space. In this work, we examined whether Rhodobacter sphaeroides, which forms an intracytoplasmic membrane, can be used for long-chain FFA production using phospholipase. RESULTS: The recombinant R. sphaeroides strain Rs-A2, which heterologously produces Arabidopsis thaliana phospholipase A2 (PLA2) in the periplasm, excretes FFAs during growth. FFA productivity under photoheterotrophic conditions is higher than that observed under aerobic or semiaerobic conditions. When the biosynthetic enzymes for FA (ß-ketoacyl-ACP synthase, FabH) and phosphatidate (1-acyl-sn-glycerol-3-phosphate acyltransferase, PlsC) were overproduced in Rs-A2, the FFA productivity of the resulting strain Rs-HCA2 was elevated, and the FFAs produced mainly consisted of long-chain FAs of cis-vaccenate, stearate, and palmitate in an approximately equimolar ratio. The high-cell-density culture of Rs-HCA2 with DMSO in two-phase culture with dodecane resulted in an increase of overall carbon substrate consumption, which subsequently leads to a large increase in FFA productivity of up to 2.0 g L-1 day-1. Overexpression of the genes encoding phosphate acyltransferase (PlsX) and glycerol-3-phosphate acyltransferase (PlsY), which catalyze the biosynthetic steps immediately upstream from PlsC, in Rs-HCA2 generated Rs-HXYCA2, which grew faster than Rs-HCA2 and showed an FFA productivity of 2.8 g L-1 day-1 with an FFA titer of 8.5 g L-1. CONCLUSION: We showed that long-chain FFAs can be produced from metabolically engineered R. sphaeroides heterologously producing PLA2 in the periplasm. The FFA productivity was greatly increased by high-cell-density culture in two-phase culture with dodecane. This approach provides highly competitive productivity of long-chain FFAs by R. sphaeroides compared with other bacteria. This method may be applied to FFA production by other photosynthetic bacteria with similar differentiated membrane systems.


Assuntos
Alcanos/química , Ácidos Graxos não Esterificados/biossíntese , Periplasma/enzimologia , Fosfolipases A2/metabolismo , Rhodobacter sphaeroides/metabolismo , Lipídeos de Membrana/metabolismo , Engenharia Metabólica , Rhodobacter sphaeroides/genética
11.
Plant Physiol ; 173(4): 2370-2382, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28223317

RESUMO

High-temperature stress often leads to differential RNA splicing, thus accumulating different types and/or amounts of mature mRNAs in eukaryotic cells. However, regulatory mechanisms underlying plant precursor mRNA (pre-mRNA) splicing in the environmental stress conditions remain elusive. Herein, we describe that a U5-snRNP-interacting protein homolog STABILIZED1 (STA1) has pre-mRNA splicing activity for heat-inducible transcripts including HEAT STRESS TRANSCRIPTION FACTORs and various HEAT SHOCK PROTEINs for the establishment of heat stress tolerance in Arabidopsis (Arabidopsis thaliana). Our cell-based splicing reporter assay demonstrated STA1 acts on pre-mRNA splicing for specific subsets of stress-related genes. Cellular reconstitution of heat-inducible transcription cascades supported the view that STA1-dependent pre-mRNA splicing plays a role in DREB2A-dependent HSFA3 expression for heat-responsive gene expression. Further genetic analysis with a loss-of-function mutant sta1-1, STA1-expressing transgenic plants in Col background, and STA1-expressing transgenic plants in the sta1-1 background verified that STA1 is essential in expression of necessary genes including HSFA3 for two-step heat stress tolerance in plants. However, constitutive overexpression of the cDNA version of HSFA3 in the sta1-1 background is unable to execute plant heat stress tolerance in sta1-1 Consistently our global target analysis of STA1 showed that its splicing activity modulates a rather broad range of gene expression in response to heat treatment. The findings of this study reveal that heat-inducible STA1 activity for pre-mRNA splicing serves as a molecular regulatory mechanism underlying the plant stress tolerance to high-temperature stress.


Assuntos
Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Proteínas Nucleares/genética , Precursores de RNA/genética , Splicing de RNA , Termotolerância/genética , Arabidopsis/genética , Temperatura Alta , Modelos Genéticos , Mutação , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Estresse Fisiológico
12.
Plant Cell ; 27(1): 121-31, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25616873

RESUMO

Phyllotaxy describes the geometric arrangement of leaves and is important for plant productivity. Auxin is well known to regulate phyllotactic patterns via PIN1-dependent auxin polar transport, and studies of maize (Zea mays) aberrant phyllotaxy1 (abph1) mutants suggest the importance of auxin and cytokinin signaling for control of phyllotaxy. However, whether additional regulators control these patterns is poorly understood. Here, we report a new dominant maize mutant, Aberrant phyllotaxy2 (Abph2), in which the shoot meristems are enlarged and the phyllotactic pattern switches from alternate to decussate. Map-based cloning revealed that the Abph2 mutation was caused by transposition of a glutaredoxin gene, MALE STERILE CONVERTED ANTHER1 (MSCA1), which gained an altered expression pattern in Abph2 mutant embryos. msca1 loss-of-function mutants have reduced meristem size and revealed a novel function of glutaredoxins in meristem growth. In addition, MSCA1 interacts with a TGA transcription factor, FASCIATED EAR4, suggesting a novel regulatory module for regulating shoot meristem size.


Assuntos
Meristema/metabolismo , Proteínas de Plantas/metabolismo , Zea mays/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Meristema/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , Zea mays/genética , Zea mays/crescimento & desenvolvimento
13.
Plant Cell Rep ; 37(3): 453-465, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29247292

RESUMO

KEY MESSAGE: PaFKBP12 overexpression in Arabidopsis resulted in stress tolerance to heat, ABA, drought, and salt stress, in addition to growth promotion under normal conditions. Polytrichastrum alpinum (alpine haircap moss) is one of polar organisms that can withstand the severe conditions of the Antarctic. In this study, we report the isolation of a peptidyl prolyl isomerase FKBP12 gene (PaFKBP12) from P. alpinum collected in the Antarctic and its functional implications in development and stress responses in plants. In P. alpinum, PaFKBP12 expression was induced by heat and ABA. Overexpression of PaFKBP12 in Arabidopsis increased the plant size, which appeared to result from increased rates of cell cycle. Under heat stress conditions, PaFKBP12-overexpressing lines (PaFKBP12-OE) showed better growth and survival than the wild type. PaFKBP12-OE also showed higher root elongation rates, better shoot growth and enhanced survival at higher concentrations of ABA in comparison to the wild type. In addition, PaFKBP12-OE were more tolerant to drought and salt stress than the wild type. All these phenotypes were accompanied with higher induction of the stress responsive genes in PaFKBP12-OE than in the wild type. Taken together, our findings revealed important functions of PaFKBP12 in plant development and abiotic stress responses.


Assuntos
Adaptação Fisiológica/genética , Arabidopsis/genética , Briófitas/genética , Peptidilprolil Isomerase/genética , Proteínas de Plantas/genética , Ácido Abscísico/farmacologia , Briófitas/enzimologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Temperatura Alta , Reguladores de Crescimento de Plantas/farmacologia , Raízes de Plantas/genética , Brotos de Planta/genética , Plantas Geneticamente Modificadas , Tolerância ao Sal/genética , Estresse Fisiológico , Transgenes/genética
14.
Appl Opt ; 57(9): 2197-2201, 2018 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-29604012

RESUMO

We propose a robust method that can quantitatively discriminate genuine pearls from imitation ones by introducing the concept of entropy in the polarization-sensitive optical coherence tomography (PS-OCT). Qualitatively, by examining the birefringence properties of the nacre region of pearls with PS-OCT, the genuine pearls can be easily discriminated. To quantify the amount of birefringence formation, however, the concept of phase retardation entropy is introduced, which is expected to have a higher value when a PS-OCT tomogram has more diverse phase retardation values in its histogram. Experimental confirmation demonstrated that the phase retardation entropy of a genuine pearl was always higher than an imitated pearl. By experimenting with various genuine and imitation pearls, we can say that the phase retardation entropy is effective as a quantitative criterion for discriminating and evaluating pearls.

15.
Sensors (Basel) ; 18(12)2018 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-30486346

RESUMO

A method for adjusting the working distance and spot size of a fiber probe while suppressing or enhancing the back-coupling to the lead-in fiber is presented. As the optical fiber probe, a lensed optical fiber (LOF) was made by splicing a short piece of coreless silica fiber (CSF) on a single-mode fiber and forming a lens at the end of the CSF. By controlling the length of the CSF and the radius of lens curvature, the optical properties of the LOF were adjusted. The evolution of the beam in the LOF was analyzed by using the Gaussian ABCD matrix method. To confirm the idea experimentally, 17 LOF samples were fabricated and analyzed theoretically and also experimentally. The results show that it is feasible in designing the LOF to be more suitable for specific or dedicated applications. Applications in physical sensing and biomedical imaging fields are expected.

16.
Int J Mol Sci ; 19(3)2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29494552

RESUMO

Organellar genomes of bryophytes are poorly represented with chloroplast genomes of only four mosses, four liverworts and two hornworts having been sequenced and annotated. Moreover, while Antarctic vegetation is dominated by the bryophytes, there are few reports on the plastid genomes for the Antarctic bryophytes. Sanionia uncinata (Hedw.) Loeske is one of the most dominant moss species in the maritime Antarctic. It has been researched as an important marker for ecological studies and as an extremophile plant for studies on stress tolerance. Here, we report the complete plastome sequence of S. uncinata, which can be exploited in comparative studies to identify the lineage-specific divergence across different species. The complete plastome of S. uncinata is 124,374 bp in length with a typical quadripartite structure of 114 unique genes including 82 unique protein-coding genes, 37 tRNA genes and four rRNA genes. However, two genes encoding the α subunit of RNA polymerase (rpoA) and encoding the cytochrome b6/f complex subunit VIII (petN) were absent. We could identify nuclear genes homologous to those genes, which suggests that rpoA and petN might have been relocated from the chloroplast genome to the nuclear genome.


Assuntos
Bryopsida/genética , Genoma de Planta , Genômica , Regiões Antárticas , Bryopsida/classificação , Biologia Computacional/métodos , Ontologia Genética , Genes de Cloroplastos , Genômica/métodos , Anotação de Sequência Molecular , Filogenia , Edição de RNA , Sequenciamento Completo do Genoma
17.
Mol Cancer ; 16(1): 140, 2017 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-28830458

RESUMO

BACKGROUND: Glioma stem cells (GSCs) are a major cause of the frequent relapse observed in glioma, due to their high drug resistance and their differentiation potential. Therefore, understanding the molecular mechanisms governing the 'cancer stemness' of GSCs will be particularly important for improving the prognosis of glioma patients. METHODS: We previously established cancerous neural stem cells (CNSCs) from immortalized human neural stem cells (F3 cells), using the H-Ras oncogene. In this study, we utilized the EGFRviii mutation, which frequently occurs in brain cancers, to establish another CNSC line (F3.EGFRviii), and characterized its stemness under spheroid culture. RESULTS: The F3.EGFRviii cell line was highly tumorigenic in vitro and showed high ERK1/2 activity as well as expression of a variety of genes associated with cancer stemness, such as SOX2 and NANOG, under spheroid culture conditions. Through meta-analysis, PCR super-array, and subsequent biochemical assays, the induction of MEK partner-1 (MP1, encoded by the LAMTOR3 gene) was shown to play an important role in maintaining ERK1/2 activity during the acquisition of cancer stemness under spheroid culture conditions. High expression of this gene was also closely associated with poor prognosis in brain cancer. CONCLUSION: These data suggest that MP1 contributes to cancer stemness in EGFRviii-expressing glioma cells by driving ERK activity.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Receptores ErbB/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neurais/metabolismo , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Prognóstico
18.
Biochem Biophys Res Commun ; 487(4): 881-886, 2017 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-28465235

RESUMO

Flooding is a principal stress that limits plant productivity. The sensing of low oxygen levels (hypoxia) plays a critical role in the signaling pathway that functions in plants in flooded environments. In this study, to investigate hypoxia response mechanisms in Arabidopsis, we identified three hypoxia-related genes and subjected one of these genes, Arabidopsis thaliana HYPOXIA-INDUCED GENE DOMAIN 1 (AtHIGD1), to molecular characterization including gene expression analysis and intracellular localization of the encoded protein. AtHIGD1 was expressed in various organs but was preferentially expressed in developing siliques. Confocal microscopy of transgenic plants harboring eGFP-tagged AtHIGD1 indicated that AtHIGD1 is localized to mitochondria. Importantly, plants overexpressing AtHIGD1 exhibited increased resistance to hypoxia compared to wild type. Our results represent the first report of a biological function for an HIGD protein in plants and indicate that AtHIGD1 is a mitochondrial protein that plays an active role in mitigating the effects of hypoxia on plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Hipóxia/metabolismo , Chaperonas Moleculares/metabolismo , Sequência de Aminoácidos , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Hipóxia/genética , Chaperonas Moleculares/genética , Estresse Fisiológico
19.
Sensors (Basel) ; 17(7)2017 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-28714897

RESUMO

We demonstrated a three-dimensional (3D) dental scanning apparatus based on structured illumination. A liquid lens was used for tuning focus and a piezomotor stage was used for the shift of structured light. A simple algorithm, which detects intensity modulation, was used to perform optical sectioning with structured illumination. We reconstructed a 3D point cloud, which represents the 3D coordinates of the digitized surface of a dental gypsum cast by piling up sectioned images. We performed 3D registration of an individual 3D point cloud, which includes alignment and merging the 3D point clouds to exhibit a 3D model of the dental cast.


Assuntos
Iluminação , Algoritmos , Imageamento Tridimensional , Lentes
20.
Sensors (Basel) ; 16(5)2016 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-27213392

RESUMO

We propose an all-fiber-based dual-modal imaging system that combines noncontact photoacoustic tomography (PAT) and optical coherence tomography (OCT). The PAT remotely measures photoacoustic (PA) signals with a 1550-nm laser on the surface of a sample by utilizing a fiber interferometer as an ultrasound detector. The fiber-based OCT, employing a swept-source laser centered at 1310 nm, shares the sample arm of the PAT system. The fiber-optic probe for the combined system was homemade with a lensed single-mode fiber (SMF) and a large-core multimode fiber (MMF). The compact and robust common probe is capable of obtaining both the PA and the OCT signals at the same position without any physical contact. Additionally, the MMF of the probe delivers the short pulses of a Nd:YAG laser to efficiently excite the PA signals. We experimentally demonstrate the feasibility of the proposed dual-modal system with a phantom made of a fishing line and a black polyethylene terephthalate fiber in a tissue mimicking solution. The all-fiber-optic system, capable of providing complementary information about absorption and scattering, has a promising potential in minimally invasive and endoscopic imaging.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA