Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 27(19)2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36234911

RESUMO

The objective of the present study is to enhance the resistant starch (RS) content of high amylose rice starch with heat-moisture treatment (HMT) for industrial application. The optimized HMT condition for achieving the highest RS content established using response surface methodology (RSM) was a temperature of 100 °C, moisture content of 24.2%, and a time of 11.5 h. Upon HMT, the RS content increased from 32.1% for native starch to 46.4% in HMT starch with optimized condition. HMT of the starches reduced the solubility and swelling power. The surface of HMT starch granules was more irregular than native starch. The X-ray diffraction (XRD) peak intensity at 2θ = 5° was greatly reduced by HMT, and the peaks at 22.7° and 24.2° were merged. HMT increased the gelatinization temperature and reduced the gelatinization enthalpy. HMT provides a method for the production of high-yield RS2 with high amylose rice starch in industrial application.


Assuntos
Amilose , Oryza , Temperatura Alta , Amido Resistente , Amido , Água , Difração de Raios X
2.
HLA ; 101(5): 496-506, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36813562

RESUMO

Next-generation sequencing (NGS) has revolutionized clinical genotyping, providing high-resolution HLA genotyping with a low ambiguity rate. This study aimed to develop new NGS-based HLA genotyping (HLAaccuTest, NGeneBio, Seoul, KOREA) on the Illumina MiSeq platform and validate the clinical performance. The analytical performance of HLAaccuTest was validated for 11 loci comprising HLA-A, -B, -C, -DRB1/3/4/5, -DQA1, -DQB1, -DPA1, and -DPB1 using 157 reference samples. Among the 345 clinical samples, 180 were tested for performance evaluation and protocol optimization, and 165 were used in clinical trials in the validation phase for five loci, including HLA-A, -B, -C, -DRB1, and -DQB1. In addition, the improvement in the resolution of ambiguous alleles was also evaluated and compared with other NGS-based HLA genotyping for 18 reference samples, including five overlapping samples in analytical performance validation. All reference materials produced 100% concordant results for 11 HLA loci, 96.9% (2092 of 2160 HLA alleles) of the clinical samples were matched with the SBT results in the pre-validation phase. After the optimization phase, the clinical trials in the validation phase showed 99.7% (1645/1650 alleles) concordance with the complete resolution for 34 ambiguity results. The retesting of five discordant cases resolved all issues and yielded 100% concordant results with the SBT method. Additionally, for ambiguity using 18 reference materials with ambiguous alleles, about 30% of ambiguous alleles were more resolved than Trusight HLA v2. HLAaccuTest was successfully validated using a large volume of clinical samples and is fully applicable to the clinical laboratory.


Assuntos
Antígenos HLA-A , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Genótipo , Alelos , Sequenciamento de Nucleotídeos em Larga Escala/métodos
3.
Adv Sci (Weinh) ; 8(20): e2101882, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34397173

RESUMO

Aquaporins (AQPs), the natural water channel, have been actively investigated for overcoming the limitations of conventional desalination membranes. An AQP-based biomimetic high-pressure desalination membrane is designed by tethering AQP-carrying red blood cell membrane (RBCM) vesicles onto graphene oxide (GO). RBCMs with AQPs are incorporated into GO based on the molecular recognition between the integrin of RBCM and Arginine-Glycine-Aspartate (RGD) ligand on the GO surface. GO is pre-functionalized with the Glycine-Arginine-Glycine-Aspartate-Serine peptide to capture RBCMs. RBCMs are inserted between GO flakes through the material-specific interaction between integrin of RBCM and RGD ligand, thus ensuring sufficient coverage of channels/defects in the GO for the full functioning of the AQPs. The incorporated AQPs are not completely fixed at the GO, as tethering is mediated by the integrin-RGD pair, and suitable AQP flexibility for appropriate functioning is guaranteed without frictional hindrance from the solid substrate. The integrity of the GO-RBCMs binding can provide mechanical strength for enduring high-pressure reverse-osmosis conditions for treating large amounts of water. This biomimetic membrane exhibits 99.1% NaCl rejection and a water permeance of 7.83 L m-2 h-1 bar-1 at 8 bar with a 1000-ppm NaCl feed solution, which surpasses the upper-bound line of current state-of-the-art membranes.


Assuntos
Aquaporinas/química , Membrana Celular/química , Eritrócitos/química , Grafite/química , Arginina/química , Ácido Aspártico/química , Biomimética , Filtração , Glicina/química , Grafite/farmacologia , Humanos , Integrinas/química , Cloreto de Sódio/química , Água/química
4.
Adv Mater ; 30(14): e1705944, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29484720

RESUMO

Water purification by membranes is widely investigated to address concerns related to the scarcity of clean water. Achieving high flux and rejection simultaneously is a difficult challenge using such membranes because these properties are mutually exclusive in common artificial membranes. Nature has developed a method for this task involving water-channel membrane proteins known as aquaporins. Here, the design and fabrication of graphene oxide (GO)-based membranes with a surface-tethered peptide motif designed to mimic the water-selective filter of natural aquaporins is reported. The short RF8 (RFRFRFRF, where R and F represent arginine and phenylalanine, respectively) octapeptide is a concentrated form of the core component of the Ar/R (aromatic/arginine) water-selective filter in aquaporin. The resulting GO-RF8 shows superior flux and high rejection similar to natural aquaporins. Molecular dynamics simulation reveal the unique configuration of RF8 peptides and the transport of water in GO-RF8 membranes, supporting that RF8 effectively emulates the core function of aquaporins.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA