Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Sensors (Basel) ; 23(13)2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-37447741

RESUMO

Prolonged sitting with poor posture can lead to various health problems, including upper back pain, lower back pain, and cervical pain. Maintaining proper sitting posture is crucial for individuals while working or studying. Existing pressure sensor-based systems have been proposed to recognize sitting postures, but their accuracy ranges from 80% to 90%, leaving room for improvement. In this study, we developed a sitting posture recognition system called SPRS. We identified key areas on the chair surface that capture essential characteristics of sitting postures and employed diverse machine learning technologies to recognize ten common sitting postures. To evaluate the accuracy and usability of SPRS, we conducted a ten-minute sitting session with arbitrary postures involving 20 volunteers. The experimental results demonstrated that SPRS achieved an impressive accuracy rate of up to 99.1% in recognizing sitting postures. Additionally, we performed a usability survey using two standard questionnaires, the System Usability Scale (SUS) and the Questionnaire for User Interface Satisfaction (QUIS). The analysis of survey results indicated that SPRS is user-friendly, easy to use, and responsive.


Assuntos
Dor Lombar , Postura Sentada , Humanos , Postura , Cervicalgia , Aprendizado de Máquina
2.
Macromol Rapid Commun ; 43(5): e2100736, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34837422

RESUMO

Nano- and microscale morphology endows surfaces that play conspicuous roles in natural or artificial objects with unique functions. Surfaces with dynamic regulating features capable of switching the structures, patterns, and even dimensions of their surface profiles can control friction and wettability, thus having potential applications in antibacterial, haptics, and fluid dynamics. Here, a freestanding film with light-switchable surface based on cholesteric liquid crystal networks is presented to translate 2D flat plane into a 3D nanometer-scale topography. The wettability of the interface can be controlled by hiding or revealing the geometrical features of the surfaces with light. This reversible dynamic actuation is obtained through the order parameter change of the periodic cholesteric organization under a photoalignment procedure and lithography-free mode. Complex tailored structures can be used to encrypt tactile information and improve wettability by predesigning the orientation distribution of liquid crystal director. This rapid switching nanoprecision smart surface provides a novel platform for artificial skin, optics, and functional coatings.


Assuntos
Cristais Líquidos , Cristais Líquidos/química , Molhabilidade
3.
Opt Express ; 28(19): 27676-27687, 2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32988056

RESUMO

A liquid crystal elastomer (LCE) film is successfully deposited with a terahertz metamaterial using thermal evaporation via a programmed electronic shutter and high-efficiency cooling system. The transmittance of the metamaterial at its resonance frequency is monotonically increased from 0.0036 to 1.0 as a pump beam bends the LCE film, so the metamaterial has a large switching contrast of 277 at the frequency. The monotonic increase in the resonance transmittance arises from the constant resonance frequency of the metamaterial at the transmittance modulation and depicts that the metamaterial-deposited LCE film can continuously tune the transmitted intensity of a terahertz beam. The metamaterial-deposited LCE film has potential in developing continuously tunable intensity modulators with large switching contrasts for the application of terahertz imaging and terahertz communication. Therefore, the thermal evaporation expands the application of metamaterials and improves their optical properties.

4.
Opt Express ; 24(3): 3112-26, 2016 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-26906876

RESUMO

This study systematically investigates the morphological appearance of azo-chiral dye-doped cholesteric liquid crystal (DDCLC)/polymer coaxial microfibers obtained through the coaxial electrospinning technique and examines, for the first time, their photocontrollable reflection characteristics. Experimental results show that the quasi-continuous electrospun microfibers can be successfully fabricated at a high polymer concentration of 17.5 wt% and an optimum ratio of 2 for the feeding rates of sheath to core materials at 25 °C and a high humidity of 50% ± 2% in the spinning chamber. Furthermore, the optical controllability of the reflective features for the electrospun fibers is studied in detail by changing the concentration of the azo-chiral dopant in the core material, the UV irradiation intensity, and the core diameter of the fibers. Relevant mechanisms are addressed to explain the optical-control behaviors of the DDCLC coaxial fibers. Considering the results, optically controllable DDCLC coaxial microfibers present potential applications in UV microsensors and wearable smart textiles or swabs.


Assuntos
Luz , Óptica e Fotônica/métodos , Polímeros/química , Cor , Corantes/química , Cristais Líquidos/química , Soluções , Temperatura , Raios Ultravioleta
5.
Opt Express ; 23(8): 10168-80, 2015 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-25969059

RESUMO

This work investigates the performance evolution of color cone lasing emissions (CCLEs) based on dye-doped cholesteric liquid crystal (DDCLC) cells at different fabrication conditions. Experimental results show that the energy threshold (E(th)) and relative slope efficiency (η(s)) of the lasing signal emitted at each cone angle (0°-35°) in the CCLE decreases and increases, respectively, when the waiting time in a homogenously rubbed aligned DDCLC cell is increased from 0 hr to 216 hr (9 days). This result occurs because defect lines gradually shrink with the anchoring of the surface alignment when the waiting time is increased. Hence, the scattering loss decreases, and the dwelling time of the fluorescence photons in the resonator increases, which in turn enhances the CCLE performance. With the aligned cell given the pretreatment of a rapid annealing processing (RAP), the waiting time for obtaining an optimum CCLE can markedly be reduced sixfold. The surface alignment of the DDCLC cell also plays a necessary role in generating the CCLE. This work provides an insight into the temporal evolution of the performance for the CCLE laser and offers a method (RAP) of significantly speeding up the formation of a CCLE laser with optimum performance.

6.
Opt Express ; 22(8): 9171-81, 2014 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-24787807

RESUMO

This work demonstrates the feasibility of a novel photosensitive and all-optically fast-controllable photonic bandgap (PBG) device based on a dye-doped blue phase (DDBP), embedded with a low-concentration azobenzene liquid crystal (azo-LC). PBG of the DDBP can be reversibly fast-tuned off and on with the successive illumination of a weak UV and green beams. UV irradiation can transform the trans azo-LCs into bend cis isomers, which can easily disturb LCs at the boundary between the double twisting cylinders (DTCs) and the disclinations, and, then, quickly destabilize BPI to become a BPIII-like texture with randomly-oriented DTCs. Doing so may quickly destroy the BP PBG structure. However, with the successive illumination of a green beam, the BPI PBG device can be fast-turned on, owing to the fast disappearance of the disturbance of the azo-LCs on the boundary LCs via the green-beam-induced cis → trans back isomerization. The response time and irradiated energy density for turning off (on) the BP PBG device under the UV (green) beam irradiation are only 120 ms (120 ms) and 0.764 mJ/cm(2) (2.12 mJ/cm(2)), respectively, which are a thousand-fold reduction in photoswitching a traditional cholesteric LC (CLC) PBG device based on similar experimental conditions (i.e., materials used, azo-LC concentration (1 wt%), spectral position of PBG peak, sample thickness, and temperature difference for a working temperature lower than the clearing one). The BP PBG device can significantly contribute to efforts to develop a photosensitive and all-optically fast-controlling LC laser.

7.
Opt Express ; 22(24): 29479-92, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25606882

RESUMO

This study demonstrates for the first time a continuously tunable photonic bandgap (PBG) of wide spectral range based on a blue phase (BP) wedge cell. A continuously shifting PBG of the BP wedge cell occurs due to the thickness gradient of the wedge cell at a fixed temperature. The wedge cell provides a gradient of boundary force on the LCs and thus forms a distribution of BP crystal structure with a gradient lattice. Additionally, a spatially tunable lasing emission based on a dye-doped BP (DDBP) wedge cell is also demonstrated. The tunable band of the PBG and lasing emission is about 130 nm and 70 nm, respectively, which tuning spectral ranges are significantly wider than those of CLC and DDCLC wedge cells, respectively. Such a BP device has a significant potential in applications of tunable photonic devices and displays.


Assuntos
Corantes/química , Lasers , Fótons , Espectrometria de Fluorescência , Temperatura
8.
Opt Lett ; 39(12): 3516-9, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24978525

RESUMO

In this Letter, we propose defect-mode lasing from a one-dimensional asymmetric photonic structure with dye-doped nematic liquid crystal as a central defect layer. The local field intensity of the distinguished single defect mode at the overlapped photonic band edges is drastically enhanced by the asymmetric structure consisting of two distinct multilayer photonic crystals. With high density of states of photons, effective output lasing emission and maximum input excitation are ensured. As a result, the single-mode lasing with a low excitation threshold of 0.2 µJ/pulse is achieved due to the combination of the defect layer and the photonic band edge effect.

9.
Opt Express ; 21(13): 15765-76, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23842363

RESUMO

This paper presents an optically wavelength-tunable and intensity-switchable dye-doped cholesteric liquid crystal (DDCLC) spherical microlaser with an azo-chiral dopant. Experimental results present that two functions of optical control - tunability of lasing wavelength and switchability of lasing intensity - can be obtained for this spherical microlaser at low and high intensity regimes of non-polarized UV irradiation, respectively. If the DDCLC microdroplet is subjected to weak UV irradiation, azo-chiral molecules may transform to the bent cis state at a low concentration rate. The effect can slightly decrease the local order of LCs and thus the helical twisting power of the CLC in the microdroplet. As a result, the CLC pitch may become slightly elongated, which will cause the gradual red-shift of both omnidirectional PBG and lasing emission of the DDCLC spherical microdroplet. In contrast, when the microdroplet is subjected to strong UV irradiation, numerous azo-chiral molecules may simultaneously change to bent cis-isomers to seriously disarrange the helical texture of the CLC, which will quickly deform the PBG and deactivate the lasing emission of the microdroplet. Prolonged irradiation of a blue beam after strong UV irradiation may cause the cis azo-chiral molecules quickly convert back rod-like trans-isomers, which may then regenerate the CLC Bragg onion and PBG structures and reactivate the lasing emission of the microdroplet. Optical control of the DDCLC spherical microlaser is realized on a scale of seconds and minutes when UV irradiation is strong and weak, respectively. The 3D DDCLC spherical microlaser is a highly promising controllable 3D micro-light source or microlaser (e.g., all-optical 3D single photon microlaser) for applications of 3D all-optical integrated photonics, laser displays, and biomedical imaging and therapy, and as a 3D UV microdosagemeter or microsensor.

10.
Health Informatics J ; 29(2): 14604582231183399, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37311106

RESUMO

Porters play an important role in supporting hospital operations. Their responsibilities include transporting patients and medical equipment between wards and departments. They also need to deliver specimens, drugs, and patients' notes to the correct place at the right time. Therefore, maintaining a trustworthy and reliable porter team is crucial for hospitals to ensure the quality of patient care and smooth the flow of daily operations. However, most existing porter systems lack detailed information about the porter movement process. For example, the location of porters is not transparent to the dispatch center. Thus, the dispatcher does not know if porters are spending all their time providing services. The invisibility makes it difficult for hospitals to assess and improve the efficiency of porter operations. In this work, we first developed an indoor location-based porter management system (LOPS) on top of the infrastructure of indoor positioning services in the hospital National Taiwan University Hospital YunLin Branch. The LOPS provides real-time location information of porters for the dispatcher to prioritize tasks and manage assignments. We then conducted a 5-month field trial to collect porters' traces. Finally, a series of quantitative analyses were performed to assess the efficiency of porter operations, such as the movement distribution of porters in different time periods and areas, workload distribution among porters, and possible bottlenecks of delivering services. Based on the analysis results, recommendations were given to improve the efficiency of the porter team.


Assuntos
Hospitais , Carga de Trabalho , Humanos
11.
Opt Express ; 19(19): 18199-206, 2011 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-21935186

RESUMO

This study is the first to investigate novel cone lasers and the tunabilities of their lasing feature and performance based on dye-doped cholesteric liquid crystal (DDCLC) films with various LC birefringences (Δn). A unique conically-symmetric lasing ring with a low energy threshold occurs at a specific nonzero oblique angle (θ(ring)). The low energy threshold is comparable to those for common lasing signals occurring simultaneously at the short- and long-wavelength edges (SWE and LWE) of the CLC reflection band (CLCRB) for 0°. The lasing ring is induced by the enhancement in the density of photonic state for the fluorescence with a wavelength of λ(ring) based on an edge-overlapping effect, in which λ(ring) is just located at an edge-overlapping spectral position of the SWE of the CLCRB for 0° and the LWE of the CLCRB for θ(ring). The lasing feature (i.e., the lasing wavelengths of the three lasing signals and the emitted angle of the lasing ring) are tuned by varying Δn. The simulated relationship of an oblique angle with Δn, in which the SWE of the CLCRB for that oblique angle just overlaps the LWE of the CLCRB for 0°, can be obtained by calculating the dispersion relation of a planar CLC structure with various values of Δn based on Berreman's 4 × 4 matrix approach. The result of the calculation is highly consistent with the experimental data for the dependence of θ(ring) on Δn. Furthermore, the dependence of lasing performance (energy threshold and relative slope efficiency) on Δn for the three lasing signals is also measured, which findings can be used to qualitatively identify positive interaction or competition among the three lasing signals.

12.
Opt Express ; 19(10): 9676-89, 2011 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-21643225

RESUMO

A novel demonstration of an all-optically controllable dye-doped liquid crystal infiltrated photonic crystal fiber (DDLCIPCF) is presented. Overall spectral transmittance of the DDLCIPCF can decrease and then increase with a concomitant red-shift of the spectrum curve with increasing irradiation time of one UV beam. Continuing irradiation of one green beam following UV illumination on the DDLCIPCF can cause the transmission spectrum to recover completely. The reversible all-optical controllability of the photonic band structure of the fiber is attributable to the isothermal planar nematic (PN)→scattering (S)→isotropic (I) and I→S→PN state transitions of the LCs via the UV-beam-induced trans→cis and green-beam-induced cis→trans back isomerizations of the azo-dye, respectively, in the cladding of the DDLCIPCF. The photoinduced appearance of the S state and the variation of the index modulation between the core and the cladding of the fiber result in the variation of overall spectral transmittance and the shift of transmission spectrum, respectively.

13.
Opt Express ; 19(3): 2391-400, 2011 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-21369057

RESUMO

This investigation elucidates for the first time electrically controllable random lasers below the threshold voltage in dye-doped liquid crystal (DDLC) cells with and without adding an azo-dye. Experimental results show that the lasing intensities and the energy thresholds of the random lasers can be decreased and increased, respectively, by increasing the applied voltage below the Fréedericksz transition threshold. The below-threshold-electric-controllability of the random lasers is attributable to the effective decrease of the spatial fluctuation of the orientational order and thus of the dielectric tensor of LCs by increasing the electric-field-aligned order of LCs below the threshold, thereby increasing the diffusion constant and decreasing the scattering strength of the fluorescence photons in their recurrent multiple scattering. This can result in the decrease in the lasing intensity of the random lasers and the increase in their energy thresholds. Furthermore, the addition of an azo-dye in DDLC cell can induce the range of the working voltage below the threshold for the control of the random laser to reduce.


Assuntos
Eletrônica/instrumentação , Lasers , Cristais Líquidos/química , Cristais Líquidos/efeitos da radiação , Desenho Assistido por Computador , Campos Eletromagnéticos , Desenho de Equipamento , Análise de Falha de Equipamento
14.
ACS Appl Mater Interfaces ; 13(46): 55550-55558, 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34761914

RESUMO

Dynamic control of motion at the molecular level is a core issue in promoting the bottom-up programmable modulation of sophisticated self-organized superstructures. Self-assembled artificial nanoarchitectures through subtle noncovalent interactions are indispensable for diverse applications. Here, the active solar renewable energy is used to harness cholesteric liquid crystal (CLC) superstructure devices via delicate control of the dynamic equilibrium between the concentrations of molecular motor molecules with opposite handedness. Thus, the spectral position and handedness of a photonic superstructure can be tuned continuously, bidirectionally, and reversibly within the entire working spectrum (from near-ultraviolet to the thermal infrared region, over 2 µm). With these unique horizons, three advanced photoresponsive chiroptical devices, namely, a mirrorless laser, an optical vortex generator, and an encrypted contactless photorewritable board, are successfully demonstrated. The sunlight-fueled chirality inversion prompts facile switching of functionalities, such as free-space optical communication, stereoscopic display technology, and spin-to-orbital angular momentum conversion. Motor-based chiroptic devices with dynamic and versatility controllability, fast response, ecofriendly characteristics, stability, and high efficiency have potential to replace the traditional elements with static functions. The inexhaustible natural power provides a promising means for outdoor-use optics and nanophotonics.

15.
ACS Appl Mater Interfaces ; 13(37): 44916-44924, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34514781

RESUMO

Self-organized periodic micro/nanostructures caused by stimulus-responsive structural deformation often occur in anisotropic self-assembled supramolecular systems (e.g., liquid crystal systems). However, the long-range orderliness of these structures is often beyond control. In this article, we first demonstrate that a large-area disordered two-dimensional (2D) microgrid chiral structure appears in the cholesteric liquid crystal (CLC) reactive mixture because of the photopolymerization-induced Helfrich deformation effect under exposure to the single UV-laser beam. The result is attributed to the impact of an internal longitudinal strain, which is caused by the pitch contraction of the CLC-monomer region through the continuing compression of the thickening CLC polymer layer adhered on the illuminated substrate of the sample during photopolymerization. The experimental results further show that a one-dimensional (1D) UV-laser interference field can be used to effectively control the postformed 2D microgrid structure to arrange in an orderly manner throughout the large exposed area (an order of centimeter). The optimum ability for controlling the orderliness of the microgrid structure can be achieved if the spacing width of the interference field approximates the periodicity of the postformed 2D microgrids. Several factors, such as the pitch of the CLC mixture and the included angle and intensity of the two interfering laser beams, which influence the orderliness and properties of the 2D microgrid structure, are explored in this study. The result of this research opens a new page to improve the applicability of the Helfrich deformation phenomenon and further provides a reference platform for manipulating, modifying, and even tailoring periodic micro/nanostructures in self-organized supramolecular soft-matter systems for application in advanced optics/photonics.

16.
Opt Express ; 18(3): 2613-20, 2010 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-20174090

RESUMO

This work demonstrates, for the first time, an all-optically controllable distributed feedback (DFB) laser based on a dye-doped holographic polymer-dispersed liquid crystal (DDHPDLC) grating with a photoisomerizable dye. Intensity of the lasing emission can be reduced and increased by raising the irradiation intensity of one CW circularly-polarized green beam and the irradiation time of one CW circularly-polarized red beam, respectively. The all-optical controllability of the lasing emission is owing to the green-beam-induced isothermal nematic-->isotropic and red-beam-induced isothermal isotropic-->nematic phase transitions of the LCs via trans-->cis and cis-->trans back isomerizations of the azo-dye, respectively, in the LC-droplet-rich regions of the grating. The former (latter) mechanism can reduce (increase) the index modulation and thereby the coupling strength in the DFB grating, resulting in the decay (rise) of the lasing emission. Thermal effect is excluded from possible mechanisms causing such an optical controllability of the lasing emission.

17.
Opt Express ; 18(25): 25896-905, 2010 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-21164935

RESUMO

This study investigates, for the first time, an all-optically controllable random laser based on a dye-doped liquid crystal (DDLC) cell added with a photoisomerizable dye. Experimental results indicate that the lasing intensity of this random laser can be all-optically controlled to decrease and increase sequentially with a two-step exposure of one UV and then one green beam. All-optically reversible controllability of the random lasing emission is attributed to the isothermal nematic(N)-->isotropic(I) and I-->N phase transitions for LCs due to the UV-beam-induced trans-->cis and green-beam-induced cis-->trans back isomerizations of the photoisomerizable dye, respectively. The former and the latter can decrease and increase the spatial fluctuations of the order and thus of the dielectric tensor of LCs, respectively, subsequently increasing and decreasing the diffusion constant (or transport mean free path), respectively, and thus decaying and rising the scattering strength for the fluorescence photons in their recurrent multi-scattering process, respectively. The consequent decrease and increase of the lasing intensity for the random laser and thus the rise and descent of its energy threshold are generated, respectively.


Assuntos
Corantes/química , Lasers , Cristais Líquidos/química , Corantes/efeitos da radiação , Cristalização/métodos , Desenho de Equipamento , Análise de Falha de Equipamento , Isomerismo , Luz , Cristais Líquidos/efeitos da radiação , Fotoquímica/métodos
18.
Opt Express ; 18(9): 9496-503, 2010 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-20588795

RESUMO

This study investigates, for the first time, a photoerasable and photorewritable spatially-tunable laser using a dye-doped cholesteric liquid crystal (DDCLC) with a photoisomerizable chiral dopant (AzoM). UV illumination via a photomask with a transmittance-gradient can create a pitch gradient in the cell such that the lasing wavelength can be spatially tuned over a wide band of 134nm. The pitch gradient is generated by the UV-irradiation-induced gradient of the cis-AzoM concentration and therefore the induced gradient of the cell HTP value, resulting in the spatial tunability of the laser. Furthermore, the laser has advantages of photoerasability and photorewritability. The spatial tunability of the laser can undergo more than 100 cycles of photoerasing and photorewriting processes without decay or damage.

19.
Opt Express ; 17(25): 22386-92, 2009 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-20052162

RESUMO

An all-optical and polarization-independent spatial filter was developed in a vertically-aligned (VA) polymer-stabilized liquid crystal (PSLC) film with a photoconductive (PC) layer. This spatial filter is based on the effect of light on the conductivity of PC layer: high (low)-intensity light makes the conductivity of the PC layer high (low), resulting in a low (high) threshold voltage of the PC-coated VA PSLC cell. Experimental results indicate that this spatial filter is a high-pass filter with low optical-power consumption (about 1.11 mW/cm(2)) in an optical Fourier transform system. The high-pass characteristic was confirmed by simulation. Accordingly, the all-optical and polarization-independent spatial filter can be used to enhance the edges of images.


Assuntos
Eletrônica/instrumentação , Cristais Líquidos/química , Membranas Artificiais , Refratometria/instrumentação , Desenho Assistido por Computador , Condutividade Elétrica , Desenho de Equipamento , Análise de Falha de Equipamento , Luz , Espalhamento de Radiação
20.
ACS Omega ; 3(11): 15435-15441, 2018 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-30533577

RESUMO

We show that micron-scale two-dimensional (2D) honeycomb microwells can significantly improve the stability of blue phase liquid crystals (BPLCs). Polymeric microwells made by direct laser writing improve various features of the blue phase (BP) including a dramatic extension of stable temperature range and a large increase both in reflectivity and thermal stability of the reflective peak wavelength. These results are mainly attributed to the omnidirectional anchoring of the isotropically oriented BP molecules at the polymer walls of the hexagonal microwells and at the top and bottom substrates. This leads to an omnidirectional stabilization of the entire BPLC system. This study not only provides a novel insight into the mechanism for the BP formation in the 2D microwell but also points to an improved route to stabilize BP using 2D microwell arrays.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA