RESUMO
The laboratory mouse ranks among the most important experimental systems for biomedical research and molecular reference maps of such models are essential informational tools. Here, we present a quantitative draft of the mouse proteome and phosphoproteome constructed from 41 healthy tissues and several lines of analyses exemplify which insights can be gleaned from the data. For instance, tissue- and cell-type resolved profiles provide protein evidence for the expression of 17,000 genes, thousands of isoforms and 50,000 phosphorylation sites in vivo. Proteogenomic comparison of mouse, human and Arabidopsis reveal common and distinct mechanisms of gene expression regulation and, despite many similarities, numerous differentially abundant orthologs that likely serve species-specific functions. We leverage the mouse proteome by integrating phenotypic drug (n > 400) and radiation response data with the proteomes of 66 pancreatic ductal adenocarcinoma (PDAC) cell lines to reveal molecular markers for sensitivity and resistance. This unique atlas complements other molecular resources for the mouse and can be explored online via ProteomicsDB and PACiFIC.
Assuntos
Arabidopsis , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animais , Arabidopsis/genética , Carcinoma Ductal Pancreático/metabolismo , Espectrometria de Massas , Camundongos , Neoplasias Pancreáticas/genética , Proteoma/análiseRESUMO
Kinase inhibitors (KIs) are important cancer drugs but often feature polypharmacology that is molecularly not understood. This disconnect is particularly apparent in cancer entities such as sarcomas for which the oncogenic drivers are often not clear. To investigate more systematically how the cellular proteotypes of sarcoma cells shape their response to molecularly targeted drugs, we profiled the proteomes and phosphoproteomes of 17 sarcoma cell lines and screened the same against 150 cancer drugs. The resulting 2550 phenotypic profiles revealed distinct drug responses and the cellular activity landscapes derived from deep (phospho)proteomes (9-10,000 proteins and 10-27,000 phosphorylation sites per cell line) enabled several lines of analysis. For instance, connecting the (phospho)proteomic data with drug responses revealed known and novel mechanisms of action (MoAs) of KIs and identified markers of drug sensitivity or resistance. All data is publicly accessible via an interactive web application that enables exploration of this rich molecular resource for a better understanding of active signalling pathways in sarcoma cells, identifying treatment response predictors and revealing novel MoA of clinical KIs.
Assuntos
Antineoplásicos , Sarcoma , Humanos , Proteômica/métodos , Proteoma , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Sarcoma/tratamento farmacológico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular TumoralRESUMO
Single-cell proteomics by mass spectrometry (SCoPE-MS) is a recently introduced method to quantify multiplexed single-cell proteomes. While this technique has generated great excitement, the underlying technologies (isobaric labeling and mass spectrometry (MS)) have technical limitations with the potential to affect data quality and biological interpretation. These limitations are particularly relevant when a carrier proteome, a sample added at 25-500× the amount of a single-cell proteome, is used to enable peptide identifications. Here we perform controlled experiments with increasing carrier proteome amounts and evaluate quantitative accuracy, as it relates to mass analyzer dynamic range, multiplexing level and number of ions sampled. We demonstrate that an increase in carrier proteome level requires a concomitant increase in the number of ions sampled to maintain quantitative accuracy. Lastly, we introduce Single-Cell Proteomics Companion (SCPCompanion), a software tool that enables rapid evaluation of single-cell proteomic data and recommends instrument and data analysis parameters for improved data quality.
Assuntos
Fragmentos de Peptídeos/análise , Proteoma/análise , Proteômica/métodos , Análise de Célula Única/métodos , Software , Espectrometria de Massas em Tandem/métodos , Células HeLa , Humanos , Células K562RESUMO
This study investigated the capability of electromembrane extraction (EME) as a general technique for peptides, by extracting complex pools of peptides comprising in total of 5953 different substances, varying in size from seven to 16 amino acids. Electromembrane extraction was conducted from a sample adjusted to pH 3.0 and utilized a liquid membrane consisting of 2-nitrophenyl octyl ether and carvacrol (1:1 w/w), containing 2% (w/w) di(2-ethylhexyl) phosphate. The acceptor phase was 50 mM phosphoric acid (pH 1.8), the extraction time was 45 min, and 10 V was used. High extraction efficiency, defined as a higher peptide signal in the acceptor than the sample after extraction, was achieved for 3706 different peptides. Extraction efficiencies were predominantly influenced by the hydrophobicity of the peptides and their net charge in the sample. Hydrophobic peptides were extracted with a net charge of +1, while hydrophilic peptides were extracted when the net charge was +2 or higher. A computational model based on machine learning was developed to predict the extractability of peptides based on peptide descriptors, including the grand average of hydropathy index and net charge at pH 3.0 (sample pH). This research shows that EME has general applicability for peptides and represents the first steps toward in silico prediction of extraction efficiency.
Assuntos
Interações Hidrofóbicas e Hidrofílicas , Peptídeos , Peptídeos/química , Peptídeos/isolamento & purificação , Membranas Artificiais , Técnicas Eletroquímicas , Tamanho da Partícula , Concentração de Íons de Hidrogênio , Éteres , OrganofosfatosRESUMO
As the COVID-19 pandemic continues to spread, thousands of scientists around the globe have changed research direction to understand better how the virus works and to find out how it may be tackled. The number of manuscripts on preprint servers is soaring and peer-reviewed publications using MS-based proteomics are beginning to emerge. To facilitate proteomic research on SARS-CoV-2, the virus that causes COVID-19, this report presents deep-scale proteomes (10,000 proteins; >130,000 peptides) of common cell line models, notably Vero E6, Calu-3, Caco-2, and ACE2-A549 that characterize their protein expression profiles including viral entry factors such as ACE2 or TMPRSS2. Using the 9 kDa protein SRP9 and the breast cancer oncogene BRCA1 as examples, we show how the proteome expression data can be used to refine the annotation of protein-coding regions of the African green monkey and the Vero cell line genomes. Monitoring changes of the proteome on viral infection revealed widespread expression changes including transcriptional regulators, protease inhibitors, and proteins involved in innate immunity. Based on a library of 98 stable-isotope labeled synthetic peptides representing 11 SARS-CoV-2 proteins, we developed PRM (parallel reaction monitoring) assays for nano-flow and micro-flow LC-MS/MS. We assessed the merits of these PRM assays using supernatants of virus-infected Vero E6 cells and challenged the assays by analyzing two diagnostic cohorts of 24 (+30) SARS-CoV-2 positive and 28 (+9) negative cases. In light of the results obtained and including recent publications or manuscripts on preprint servers, we critically discuss the merits of MS-based proteomics for SARS-CoV-2 research and testing.
Assuntos
Betacoronavirus/genética , Infecções por Coronavirus/genética , Interações Hospedeiro-Patógeno/genética , Pneumonia Viral/genética , Proteômica/métodos , Proteínas Virais/genética , Células A549 , Sequência de Aminoácidos , Enzima de Conversão de Angiotensina 2 , Animais , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Betacoronavirus/patogenicidade , COVID-19 , Células CACO-2 , Estudos de Casos e Controles , Chlorocebus aethiops , Infecções por Coronavirus/patologia , Infecções por Coronavirus/virologia , Regulação da Expressão Gênica , Ontologia Genética , Humanos , Indicadores e Reagentes , Anotação de Sequência Molecular , Fases de Leitura Aberta , Pandemias , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo , Pneumonia Viral/patologia , Pneumonia Viral/virologia , Proteômica/instrumentação , SARS-CoV-2 , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Partícula de Reconhecimento de Sinal/genética , Partícula de Reconhecimento de Sinal/metabolismo , Transdução de Sinais , Células Vero , Proteínas Virais/classificação , Proteínas Virais/metabolismo , Internalização do VírusRESUMO
This study reveals an uncovered mechanism for the regulation of polyamine homeostasis through protein arginyl citrullination of antizyme (AZ), a natural inhibitor of ornithine decarboxylase (ODC). ODC is critical for the cellular production of polyamines. AZ binds to ODC dimers and promotes the degradation of ODC via the 26S proteasome. This study demonstrates the protein citrullination of AZ catalyzed by peptidylarginine deiminase type 4 (PAD4) both in vitro and in cells. Upon PAD4 activation, the AZ protein was citrullinated and accumulated, leading to higher levels of ODC proteins in the cell. In the PAD4-overexpressing and activating cells, the levels of ODC enzyme activity and the product putrescine increased with the level of citrullinated AZ proteins and PAD4 activity. Suppressing cellular PAD4 activity reduces the cellular levels of ODC and downregulates cellular polyamines. Furthermore, citrullination of AZ in the C-terminus attenuates AZ function in the inhibition, binding, and degradation of ODC. This paper provides evidence to illustrate that PAD4-mediated AZ citrullination upregulates cellular ODC and polyamines by retarding ODC degradation, thus interfering with the homeostasis of cellular polyamines, which may be an important pathway regulating AZ functions that is relevant to cancer biology.
Assuntos
Citrulinação/efeitos dos fármacos , Homeostase/fisiologia , Inibidores da Ornitina Descarboxilase/farmacologia , Ornitina Descarboxilase/metabolismo , Poliaminas/metabolismo , Proteínas de Transporte/metabolismo , Citrulinação/fisiologia , Homeostase/efeitos dos fármacos , Humanos , Inibidores da Ornitina Descarboxilase/metabolismo , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/metabolismoRESUMO
Citrullination is a posttranslational modification of arginine catalyzed by five peptidylarginine deiminases (PADs) in humans. The loss of a positive charge may cause structural or functional alterations, and while the modification has been linked to several diseases, including rheumatoid arthritis (RA) and cancer, its physiological or pathophysiological roles remain largely unclear. In part, this is owing to limitations in available methodology to robustly enrich, detect, and localize the modification. As a result, only a few citrullination sites have been identified on human proteins with high confidence. In this study, we mined data from mass-spectrometry-based deep proteomic profiling of 30 human tissues to identify citrullination sites on endogenous proteins. Database searching of â¼70 million tandem mass spectra yielded â¼13,000 candidate spectra, which were further triaged by spectrum quality metrics and the detection of the specific neutral loss of isocyanic acid from citrullinated peptides to reduce false positives. Because citrullination is easily confused with deamidation, we synthetized â¼2,200 citrullinated and 1,300 deamidated peptides to build a library of reference spectra. This led to the validation of 375 citrullination sites on 209 human proteins. Further analysis showed that >80% of the identified modifications sites were new, and for 56% of the proteins, citrullination was detected for the first time. Sequence motif analysis revealed a strong preference for Asp and Gly, residues around the citrullination site. Interestingly, while the modification was detected in 26 human tissues with the highest levels found in the brain and lung, citrullination levels did not correlate well with protein expression of the PAD enzymes. Even though the current work represents the largest survey of protein citrullination to date, the modification was mostly detected on high abundant proteins, arguing that the development of specific enrichment methods would be required in order to study the full extent of cellular protein citrullination.
Assuntos
Citrulinação , Mineração de Dados , Especificidade de Órgãos , Proteoma/metabolismo , Sequência de Aminoácidos , Árvores de Decisões , Humanos , Peptídeos/metabolismo , Reprodutibilidade dos TestesRESUMO
Our previous studies suggest that the fully active form of Peptidylarginine deiminase 4 (PAD4) should be a dimer and not a monomer. This paper provides a plausible mechanism for the control of PAD4 catalysis by molecular interplay between its dimer-interface loop (I-loop) and its substrate-binding loop (S-loop). Mutagenesis studies revealed that two hydrophobic residues, W347 and V469, are critical for substrate binding at the active site; mutating these two residues led to a severe reduction in the catalytic activity. We also identified several hydrophobic amino acid residues (L6, L279 and V283) at the dimer interface. Ultracentrifugation analysis revealed that interruption of the hydrophobicity of this region decreases dimer formation and, consequently, enzyme activity. Molecular dynamic simulations and mutagenesis studies suggested that the dimer interface and the substrate-binding site of PAD4, which consist of the I-loop and the S-loop, respectively, are responsible for substrate binding and dimer stabilization. We identified five residues with crucial roles in PAD4 catalysis and dimerization: Y435 and R441 in the I-loop, D465 and V469 in the S-loop, and W548, which stabilizes the I-loop via van der Waals interactions with C434 and Y435. The molecular interplay between the S-loop and the I-loop is crucial for PAD4 catalysis.
Assuntos
Histonas/química , Multimerização Proteica , Desiminases de Arginina em Proteínas/química , Biocatálise , Domínio Catalítico , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Histonas/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Cinética , Simulação de Dinâmica Molecular , Mutação , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Proteína-Arginina Desiminase do Tipo 4 , Desiminases de Arginina em Proteínas/genética , Desiminases de Arginina em Proteínas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por SubstratoRESUMO
Our recent studies of peptidylarginine deiminase 4 (PAD4) demonstrate that its non-catalytic Ca2+-binding sites play a crucial role in the assembly of the correct geometry of the enzyme. Here, we examined the folding mechanism of PAD4 and the role of Ca2+ ions in the folding pathway. Multiple mutations were introduced into the calcium-binding sites, and these mutants were termed the Ca1_site, Ca2_site, Ca3_site, Ca4_site and Ca5_site mutants. Our data indicate that during the unfolding process, the PAD4 dimer first dissociates into monomers, and the monomers then undergo a three-state denaturation process via an intermediate state formation. In addition, Ca2+ ions assist in stabilizing the folding intermediate, particularly through binding to the Ca3_site and Ca4_site to ensure the correct and active conformation of PAD4. The binding of calcium ions to the Ca1_site and Ca2_site is directly involved in the catalytic action of the enzyme. Finally, this study proposes a model for the folding of PAD4. The nascent polypeptide chains of PAD4 are first folded into monomeric intermediate states, then continue to fold into monomers, and ultimately assemble into a functional and dimeric PAD4 enzyme, and cellular Ca2+ ions may be the critical factor governing the interchange.
Assuntos
Proteínas de Ligação ao Cálcio/química , Proteínas de Ligação ao Cálcio/metabolismo , Cálcio/química , Cálcio/metabolismo , Dobramento de Proteína , Desiminases de Arginina em Proteínas/química , Desiminases de Arginina em Proteínas/metabolismo , Sítios de Ligação , Proteínas de Ligação ao Cálcio/genética , Expressão Gênica , Humanos , Modelos Biológicos , Modelos Moleculares , Mutação , Ligação Proteica , Conformação Proteica , Redobramento de Proteína , Desdobramento de Proteína , Proteína-Arginina Desiminase do Tipo 4 , Desiminases de Arginina em Proteínas/genética , TermodinâmicaRESUMO
Ornithine decarboxylase (ODC), cyclin D1 (CCND1) and antizyme inhibitor (AZI) promote cell growth. ODC and CCND1 can be degraded through antizyme (AZ)-mediated 26S proteasomal degradation. This paper describes a mechanistic study of the molecular interactions between AZ and its interacting proteins. The dissociation constant (Kd) of the binary AZ-CCND1 complex and the respective binding sites of AZ and CCND1 were determined. Our data indicate that CCND1 has a 4-fold lower binding affinity for AZ than does ODC and an approximately 40-fold lower binding affinity for AZ than does AZI. The Kd values of AZ-CCND1, AZ-ODC and AZ-AZI were 0.81, 0.21 and 0.02 µM, respectively. Furthermore, the Kd values for CCND1 binding to the AZ N-terminal peptide (AZ34-124) and AZ C-terminal peptide (AZ100-228) were 0.92 and 8.97 µM, respectively, indicating that the binding site of CCND1 may reside at the N-terminus of AZ, rather than the C-terminus. Our data also show that the ODC-AZ-CCND1 ternary complex may exist in equilibrium. The Kd values of the [AZ-CCND1]-ODC and [AZ-ODC]-CCND1 complexes were 1.26 and 4.93 µM, respectively. This is the first paper to report the reciprocal regulation of CCND1 and ODC through AZ-dependent 26S proteasomal degradation.
Assuntos
Ciclina D1/metabolismo , Ornitina Descarboxilase/metabolismo , Proteínas/antagonistas & inibidores , Sítios de Ligação , Escherichia coli/metabolismo , Humanos , Cinética , Oncogenes , Inibidores da Ornitina Descarboxilase/química , Complexo de Endopeptidases do Proteassoma/química , Ligação Proteica , Multimerização Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/metabolismo , Reticulócitos/citologia , Transdução de SinaisRESUMO
Ornithine decarboxylase (ODC) catalyzes the decarboxylation of ornithine to putrescine and is the rate-limiting enzyme in the polyamine biosynthesis pathway. ODC is a dimeric enzyme, and the active sites of this enzyme reside at the dimer interface. Once the enzyme dissociates, the enzyme activity is lost. In this paper, we investigated the roles of amino acid residues at the dimer interface regarding the dimerization, protein stability and/or enzyme activity of ODC. A multiple sequence alignment of ODC and its homologous protein antizyme inhibitor revealed that 5 of 9 residues (residues 165, 277, 331, 332 and 389) are divergent, whereas 4 (134, 169, 294 and 322) are conserved. Analytical ultracentrifugation analysis suggested that some dimer-interface amino acid residues contribute to formation of the dimer of ODC and that this dimerization results from the cooperativity of these interface residues. The quaternary structure of the sextuple mutant Y331S/Y389D/R277S/D332E/V322D/D134A was changed to a monomer rather than a dimer, and the Kd value of the mutant was 52.8 µM, which is over 500-fold greater than that of the wild-type ODC (ODC_WT). In addition, most interface mutants showed low but detectable or negligible enzyme activity. Therefore, the protein stability of these interface mutants was measured by differential scanning calorimetry. These results indicate that these dimer-interface residues are important for dimer formation and, as a consequence, are critical for enzyme catalysis.