Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Toxicol Mech Methods ; 33(6): 437-451, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36718047

RESUMO

Cadmium (Cd) accumulates in the body through contaminated foods or water and causes pathological damage to the liver via oxidative stress and inflammatory reactions. This study was conducted to explore the effects of dendropanoxide (DPx) on Cd-induced hepatotoxicity in rats. Sprague-Dawley (SD) rats were injected with CdCl2 (7 mg/kg body weight) intraperitoneally for 14 days for the induction of liver dysfunction. The CdCl2-exposed rats were subjected to DPx (10 mg/kg) or silymarin (50 mg/kg). The animals were euthanized after 24 h of the last CdCl2 injection and the serum biochemical parameters, lipid content, pro-inflammatory cytokine levels, apoptotic cell death and histopathology of the tissues were analyzed. Additionally, the activity of antioxidant enzymes, including superoxide dismutase (SOD) and catalase (CAT), was measured. Compared to controls, Cd-injected rats showed significantly elevated serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), triglycerides (TG), total cholesterol, and pro-inflammatory cytokines, and a remarkable decrease in SOD and CAT activities. Importantly, Cd-induced liver damage was drastically ameliorated by treatment with DPx or silymarin. Treatment with DPx protected the Cd-induced histopathological hepatic injury, as confirmed by the evaluation of TUNEL assay. DPx treatment significantly reduced Bax and caspase-3 expression in Cd-injected rats. Additionally, HO-1 and NRF2 expressions were significantly increased after DPx administration in the liver of Cd-injected rats. Our data indicate that DPx successfully prevents Cd-induced hepatotoxicity by emphasizing the antioxidant and anti-inflammatory effect.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Silimarina , Ratos , Animais , Cádmio/toxicidade , Cádmio/metabolismo , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Antioxidantes/metabolismo , Ratos Sprague-Dawley , Cloreto de Cádmio/toxicidade , Cloreto de Cádmio/metabolismo , Fígado , Estresse Oxidativo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Superóxido Dismutase/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia
2.
Neurocrit Care ; 36(3): 888-896, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34791593

RESUMO

BACKGROUND: Intravenous propacetamol is commonly used to control fever and pain in neurocritically ill patients in whom oral administration is often difficult. However, several studies reported that intravenous propacetamol may cause blood pressure drop. Thus, we aimed to investigate the occurrence and risk factors for intravenous propacetamol-induced blood pressure drop in neurocritically ill patients. METHODS: This retrospective study included consecutive patients who were administered intravenous propacetamol in a neurointensive care unit at a single tertiary academic hospital between April 2013 and June 2020. The exact timing of intravenous propacetamol administration was collected from a database of the electronic barcode medication administration system. Blood pressure drop was defined as a systolic blood pressure below 90 mm Hg or a decrease by 30 mm Hg or more. Blood pressure, pulse rate, and body temperature were collected at baseline and within 2 h after intravenous propacetamol administration. The incidence of blood pressure drop was evaluated, and multivariable logistic regression analysis was performed to identify risk factors for blood pressure drop events. RESULTS: A total of 16,586 instances of intravenous propacetamol administration in 4916 patients were eligible for this study. Intravenous propacetamol resulted in a significant decrease in systolic blood pressure (baseline 131.1 ± 17.8 mm Hg; within 1 h 124.6 ± 17.3 mm Hg; between 1 and 2 h 123.4 ± 17.4 mm Hg; P < 0.01). The incidence of blood pressure drop events was 13.5% within 2 h after intravenous propacetamol. Older age, lower or higher baseline systolic blood pressure, fever, higher Acute Physiology and Chronic Health Evaluation II score, and concomitant administration of vasopressors/inotropes or analgesics/sedatives were significant factors associated with the occurrence of blood pressure drop events after intravenous propacetamol administration. CONCLUSIONS: Intravenous propacetamol can induce hemodynamic changes and blood pressure drop events in neurocritically ill patients. This study identified the risk factors for blood pressure drop events. On the basis of our results, judicious use of intravenous propacetamol is warranted for neurocritically ill patients with risk factors that make them more susceptible to hemodynamic changes.


Assuntos
Acetaminofen , Hipotensão , Acetaminofen/análogos & derivados , Acetaminofen/uso terapêutico , Pressão Sanguínea , Febre/induzido quimicamente , Febre/epidemiologia , Humanos , Hipotensão/tratamento farmacológico , Estudos Retrospectivos , Fatores de Risco
3.
Int J Mol Sci ; 22(1)2020 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-33396907

RESUMO

Near the bone remodeling compartments (BRC), extracellular calcium concentration (Ca2+o) is locally elevated and bone marrow stromal cells (BMSCs) close to the BRC can be exposed to high calcium concentration. The calcium-sensing receptor (CaSR) is known to play a key role in maintaining extracellular calcium homeostasis by sensing fluctuations in the levels of extracellular calcium (Ca2+o). When human BMSCs (hBMSCs) were exposed to various calcium concentrations (1.8, 3, 5, 10, 30 mM), moderate-high extracellular calcium concentrations (3-5 mM) stimulated proliferation, while a high calcium concentration (30 mM) inhibited the proliferation. Exposure to various calcium concentrations did not induce significant differences in the apoptotic cell fraction. Evaluation of multi-lineage differentiation potential showed no significant difference among various calcium concentration groups, except for the high calcium concentration (30 mM) treated group, which resulted in increased calcification after in vitro osteogenic differentiation. Treatment of NPS2143, a CaSR inhibitor, abolished the stimulatory effect on hBMSCs proliferation and migration indicating that CaSR is involved. These results suggest that the calcium concentration gradient near the BRC may play an important role in bone remodeling by acting as an osteoblast-osteoclast coupling mechanism through CaSR.


Assuntos
Remodelação Óssea , Calcificação Fisiológica , Cálcio/metabolismo , Células-Tronco Mesenquimais/citologia , Osteoblastos/citologia , Osteoclastos/citologia , Receptores de Detecção de Cálcio/metabolismo , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Humanos , Células-Tronco Mesenquimais/metabolismo , Osteoblastos/metabolismo , Osteoclastos/metabolismo
4.
Artigo em Inglês | MEDLINE | ID: mdl-28843503

RESUMO

TALLYHO/Jng (TH) mice reveal hypercholesterolemia at an early age before their plasma glucose levels have increased. The increased plasma cholesterol should be related to bile acids (BAs) metabolism, because cholesterol is the precursor of BAs and BAs change cholesterol metabolism in a feedback manner. We analyzed the BAs pool size, BAs composition, and expression levels of several proteins that have key roles in BAs synthesis, excretion, and reabsorption and compared them to those of C57BL/6 (B6) mice to study BAs metabolism in TH mice. TH mice exhibited an increased total BAs pool size, increased BAs content in the cecum feces, and an increased ratio of muricholic acid (MCA)/cholic acid (CA). The mRNA and protein levels of cholesterol 7 alpha-hydroxylase (Cyp7a1) and the ATP-binding cassette sub-family G member 5 (Abcg5) were elevated in the liver but not in the apical sodium bile acid transporter (Asbt) and organic solute transporters (Osts) in the ileum. These results indicate that synthesis and the excretion of BAs from the liver to the gallbladder might be elevated, but the reabsorption rate of BAs in the ileum might be reduced. The declined expression of fibroblast growth factor 15 (Fgf15) and fibroblast growth factor receptor 4 (Fgfr4) was respectively identified in the ileum and the liver, indicating the disrupted feedback inhibition of Cyp7a1. Consequently, hypercholesterolemia in TH mice might increase the BAs amounts via the interrupted Fxr/Fgf15/Fgfr4-mediated feedback regulation of Cyp7a1.


Assuntos
Colesterol 7-alfa-Hidroxilase/genética , Diabetes Mellitus Experimental/genética , Retroalimentação Fisiológica , Hipercolesterolemia/genética , Receptores Citoplasmáticos e Nucleares/genética , Animais , Ácidos e Sais Biliares/metabolismo , Colesterol/metabolismo , Colesterol 7-alfa-Hidroxilase/metabolismo , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Retroalimentação Fisiológica/fisiologia , Hipercolesterolemia/complicações , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Regulação para Cima/genética
5.
Chemistry ; 24(59): 15725-15743, 2018 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-29791047

RESUMO

Stem cells opened great opportunity to overcome diseases that conventional therapy had only limited success. Use of scaffolds made from biomaterials not only helps handling of stem cells for delivery or transplantation but also supports enhanced cell survival. Likewise, cell encapsulation can provide stability for living animal cells even in a state of separateness. Although various chemical reactions were tried to encapsulate stolid microbial cells such as yeasts, a culture environment for the growth of animal cells allows only highly biocompatible reactions. Therefore, the animal cells were mostly encapsulated in hydrogels, which resulted in enhanced cell survival. Interestingly, major findings of chemistry on biological interfaces demonstrate that cell encapsulation in hydrogels have a further a competence for modulating cell characteristics that can go beyond just enhancing the cell survival. In this review, we present a comprehensive overview on the chemical reactions applied to hydrogel-based cell encapsulation and their effects on the characteristics and behavior of living animal cells.


Assuntos
Materiais Biocompatíveis/química , Engenharia Celular/métodos , Hidrogéis/química , Transplante de Células-Tronco , Células-Tronco/citologia , Engenharia Tecidual/métodos , Animais , Membrana Celular , Sobrevivência Celular , Reagentes de Ligações Cruzadas/química , Humanos , Propriedades de Superfície
6.
Cell Tissue Res ; 364(1): 137-47, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26547859

RESUMO

Although adipose-derived stem cells (ADSCs) have many advantageous traits compared with other postnatal stem cells, the consensus is that their differentiation potential must be improved to allow their practical utilization. During the in vitro expansion of human ADSCs (hADSCs), pre-treatment of fibroblast growth factor 2 (FGF2) not only induced an increase of approximately 44-fold in cell number at passage 7 but also augmented the differentiation potential of hADSCs. The effect of FGF2-induced cell preconditioning was evaluated by in vitro and in vivo osteogenesis after pre-treatment with various concentrations of FGF2 (0, 5, 25 ng/ml). FGF2-pre-treated hADSCs showed enhanced in vitro osteogenesis. An evaluation of in vivo osteogenic potential with an ectopic bone model showed that FGF2-preconditioned hADSCs produced an abundant osteoid/bone matrix and the effect was dependent on the concentration of FGF2 pre-treatment; bone matrix formation by control hADSCs was virtually non-existent. FGF2-pre-treated hADSCs also showed enhanced in vitro chondrogenesis, whereas no significant difference was observed in adipogenic potential. Pre-treatment of hADSCs with FGF2 induced an increase in the expression of osteogenic markers such as Cbfa1/Runx2 and alkaline phosphatase and in the expression of ß-catenin. These results suggest that FGF2 plays a highly beneficial role in the preconditioning of ADSCs for musculoskeletal tissue engineering.


Assuntos
Tecido Adiposo/metabolismo , Diferenciação Celular/efeitos dos fármacos , Fator 2 de Crescimento de Fibroblastos/farmacologia , Osteogênese/efeitos dos fármacos , Células-Tronco/metabolismo , Tecido Adiposo/citologia , Antígenos de Diferenciação/biossíntese , Células Cultivadas , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Células-Tronco/citologia
7.
Tumour Biol ; 37(6): 7315-25, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26671552

RESUMO

Here, we report a new intracellular signaling pathway involved in γ-ionizing radiation (IR)-induced migration/invasion and show that podophyllotoxin acetate (PA) inhibits the IR-induced invasion and migration of A549 cells (a non-small cell lung cancer (NSCLC) cell line). Our results revealed that IR increased the invasion/migration of A549 cells, and this effect was decreased by 10 nM PA treatment. PA also inhibited the expressions/activities of matrix metalloprotase (MMP) -2, MMP-9, and vimentin, suggesting that PA could block the IR-induced epithelial-mesenchymal transition (EMT). The IR-induced increases in invasion/migration were associated with the activation of EGFR-AKT, and PA inhibited this effect. P38 and p44/42 ERK were also involved in IR-induced invasion/migration, and combined treatments with PA plus inhibitors of each MAPK synergistically blocked this invasion/migration. In terms of transcription factors (TFs), IR-induced increases in cyclic AMP response element-binding protein-1 (CREB-1) and signal transducer and activator of transcription 3 (STAT3) increased invasion/migration and EMT. PA also inhibited these transcription factors and then blocked IR-induced invasion/migration. Collectively, these results indicate that IR induces cancer cell invasion/migration by activating the EGFR-p38/ERK-CREB-1/STAT3-EMT pathway and that PA blocks this pathway to inhibit IR-induced invasion/migration.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Transição Epitelial-Mesenquimal/efeitos da radiação , Raios gama , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Neoplasias Pulmonares/patologia , Proteínas de Neoplasias/antagonistas & inibidores , Podofilotoxina/análogos & derivados , Transdução de Sinais/efeitos da radiação , Carcinoma Pulmonar de Células não Pequenas/enzimologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/efeitos da radiação , Ensaios de Seleção de Medicamentos Antitumorais , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Neoplasias Pulmonares/enzimologia , Invasividade Neoplásica , Metástase Neoplásica , Proteínas de Neoplasias/fisiologia , Podofilotoxina/farmacologia , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/fisiologia
8.
Transfusion ; 56(12): 3047-3054, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27612015

RESUMO

BACKGROUND: Scianna (SC) blood group system comprises two antithetical antigens, Sc1 and Sc2, and five additional antigens. The antigens reside on a glycoprotein encoded by the erythroblast membrane-associated protein (ERMAP) gene. For the common ERMAP alleles, we determined the full-length nucleotide sequence that encodes the Scianna glycoprotein. STUDY DESIGN AND METHODS: Blood donor samples from five populations were analyzed including 20 African Americans, 10 Caucasians, 10 Thai, five Asians, and five Hispanics for a total of 100 chromosomes. An assay was devised to determine the genomic sequence of the ERMAP gene in one amplicon, spanning 21.4 kb and covering Exons 2 to 12 and the intervening sequence (IVS). All alleles (confirmed haplotypes) were resolved without ambiguity. RESULTS: Among 50 blood donors, we found 80 single-nucleotide polymorphisms (SNPs), including six novel SNPs, in 21,308 nucleotides covering the coding sequence of the ERMAP gene and including the introns. The noncoding sequences harbored 75 SNPs (68 in the introns and seven in the 3'-UTR). No SNP indicative of a nonfunctional allele was detected. The nucleotide sequences for 48 ERMAP alleles (confirmed haplotypes) were determined by allele-specific polymerase chain reaction and sequencing in 100 chromosomes. CONCLUSIONS: We documented 48 ERMAP alleles of 21,308 nucleotides each. The two nucleotide sequences available in GenBank for ERMAP alleles of similar length have not been found in our 100 chromosomes. Alleles determined without ambiguity can be used as templates to analyze next generation sequencing data, which will enhance the reliability in clinical diagnostics.


Assuntos
Sequência de Bases , Antígenos de Grupos Sanguíneos/genética , Butirofilinas/genética , Epidemiologia Molecular , Alelos , Doadores de Sangue , Éxons , Haplótipos , Humanos , Íntrons , Dados de Sequência Molecular , Polimorfismo de Nucleotídeo Único , Grupos Raciais/genética
9.
Biotechnol Bioeng ; 112(2): 422-7, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25082740

RESUMO

Non-destructive label-free continuous monitoring of in vitro tissue culture is an unmet demand in tissue engineering. Noting that different compositions of cartilage lead to different electrical tissue properties, we propose a new method to measure the electrical conductivity and its anisotropy during in vitro chondrogenesis. We used a conductivity tensor probe with 17 electrodes and a bio-impedance spectroscopy (BIS) device to measure the conductivity values and the anisotropy ratios at the bottom and top surfaces of the tissue samples during the culture period of 6 weeks. Clearly distinguishing glycosaminoglycans (GAGs), collagen, and also various mixtures of them, the measured conductivity value and the estimated tissue anisotropy provide diagnostic information of the depth-dependent tissue structure and compositions. Continuously monitoring the individual tissue during the entire chondrogenesis process without any adverse effect, the proposed method may significantly increase the productivity of cartilage tissue engineering.


Assuntos
Condrócitos/citologia , Condrogênese/fisiologia , Espectroscopia Dielétrica/métodos , Condutividade Elétrica , Engenharia Tecidual/métodos , Animais , Anisotropia , Células Cultivadas , Condrócitos/fisiologia , Eletrodos , Matriz Extracelular/metabolismo , Coelhos
10.
J Radiol Prot ; 34(2): 363-88, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24727361

RESUMO

Volumetric computed tomography dose index (CTDIvol) is an important dose descriptor to reconstruct organ doses for patients combined with the organ dose calculated from computational human phantoms coupled with Monte Carlo transport techniques. CTDIvol can be derived from weighted CTDI (CTDIw) normalised to the tube current-time product (mGy/100 mAs), using knowledge of tube current-time product (mAs), tube potential (kVp), type of CTDI phantoms (head or body), and pitch. The normalised CTDIw is one of the characteristics of a CT scanner but not readily available from the literature. In the current study, we established a comprehensive database of normalised CTDIw values based on multiple data sources: the ImPACT dose survey from the United Kingdom, the CT-Expo dose calculation program, and surveys performed by the US Food and Drug Administration (FDA) and the National Lung Screening Trial (NLST). From the sources, the CTDIw values for a total of 68, 138, 30, and 13 scanner model groups were collected, respectively. The different scanner groups from the four data sources were sorted and merged into 162 scanner groups for eight manufacturers including General Electric (GE), Siemens, Philips, Toshiba, Elscint, Picker, Shimadzu, and Hitachi. To fill in missing CTDI values, a method based on exponential regression analysis was developed based on the existing data. Once the database was completed, two different analyses of data variability were performed. First, we averaged CTDI values for each scanner in the different data sources and analysed the variability of the average CTDI values across the different scanner models within a given manufacturer. Among the four major manufacturers, Toshiba and Philips showed the greatest coefficient of variation (COV) (=standard deviation/mean) for the head and body normalised CTDIw values, 39% and 54%, respectively. Second, the variation across the different data sources was analysed for CT scanners where more than two data sources were involved. The CTDI values for the scanners from Siemens showed the greatest variation across the data sources, being about four times greater than the variation of Toshiba scanners. The established CTDI database will be used for the reconstruction of CTDIvol and then the estimation of individualised organ doses for retrospective patient cohorts in epidemiologic studies.


Assuntos
Carga Corporal (Radioterapia) , Bases de Dados Factuais/normas , Proteção Radiológica/normas , Radiometria/normas , Tomografia Computadorizada por Raios X/normas , Humanos , Doses de Radiação , Padrões de Referência , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Estados Unidos
11.
Npj Imaging ; 2(1)2024.
Artigo em Inglês | MEDLINE | ID: mdl-38939049

RESUMO

In the field of optical imaging, the ability to image tumors at depth with high selectivity and specificity remains a challenge. Surface enhanced resonance Raman scattering (SERRS) nanoparticles (NPs) can be employed as image contrast agents to specifically target cells in vivo; however, this technique typically requires time-intensive point-by-point acquisition of Raman spectra. Here, we combine the use of "spatially offset Raman spectroscopy" (SORS) with that of SERRS in a technique known as "surface enhanced spatially offset resonance Raman spectroscopy" (SESORRS) to image deep-seated tumors in vivo. Additionally, by accounting for the laser spot size, we report an experimental approach for detecting both the bulk tumor, subsequent delineation of tumor margins at high speed, and the identification of a deeper secondary region of interest with fewer measurements than are typically applied. To enhance light collection efficiency, four modifications were made to a previously described custom-built SORS system. Specifically, the following parameters were increased: (i) the numerical aperture (NA) of the lens, from 0.2 to 0.34; (ii) the working distance of the probe, from 9 mm to 40 mm; (iii) the NA of the fiber, from 0.2 to 0.34; and (iv) the fiber diameter, from 100 µm to 400 µm. To calculate the sampling frequency, which refers to the number of data point spectra obtained for each image, we considered the laser spot size of the elliptical beam (6 × 4 mm). Using SERRS contrast agents, we performed in vivo SESORRS imaging on a GL261-Luc mouse model of glioblastoma at four distinct sampling frequencies: par-sampling frequency (12 data points collected), and over-frequency sampling by factors of 2 (35 data points collected), 5 (176 data points collected), and 10 (651 data points collected). In comparison to the previously reported SORS system, the modified SORS instrument showed a 300% improvement in signal-to-noise ratios (SNR). The results demonstrate the ability to acquire distinct Raman spectra from deep-seated glioblastomas in mice through the skull using a low power density (6.5 mW/mm2) and 30-times shorter integration times than a previous report (0.5 s versus 15 s). The ability to map the whole head of the mouse and determine a specific region of interest using as few as 12 spectra (6 s total acquisition time) is achieved. Subsequent use of a higher sampling frequency demonstrates it is possible to delineate the tumor margins in the region of interest with greater certainty. In addition, SESORRS images indicate the emergence of a secondary tumor region deeper within the brain in agreement with MRI and H&E staining. In comparison to traditional Raman imaging approaches, this approach enables improvements in the detection of deep-seated tumors in vivo through depths of several millimeters due to improvements in SNR, spectral resolution, and depth acquisition. This approach offers an opportunity to navigate larger areas of tissues in shorter time frames than previously reported, identify regions of interest, and then image the same area with greater resolution using a higher sampling frequency. Moreover, using a SESORRS approach, we demonstrate that it is possible to detect secondary, deeper-seated lesions through the intact skull.

12.
Tissue Eng Part A ; 29(19-20): 529-540, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37382424

RESUMO

For functional reconstruction of fibrocartilage, it is necessary to reproduce the essential mechanical property exhibited by natural fibrocartilage. The distinctive mechanical property of fibrocartilage is originated from the specific histological features of fibrocartilage composed of highly aligned type I collagen (Col I) and an abundant cartilaginous matrix. While the application of tensile stimulation induces highly aligned Col I, our study reveals that it also exerts an antichondrogenic effect on scaffold-free tissues constructed with meniscal chondrocytes (MCs) and induces downregulation of Sox-9 expression and attenuated glycosaminoglycan production. Modulation of mechanotransduction by blocking nuclear translocation of Yes-associated protein (YAP) ameliorated the antichondrogenic effect in the presence of tensile stimulation. Since MCs subjected to mechanical doses either by surface stiffness or tensile stimulation showed reversibility of YAP status even after a long-term exposure to mechanotransduction, fibrocartilage tissue was constructed by sequentially inducing tissue alignment by tensile stimulation followed by inducing cartilaginous matrix production in a tension-released state. The minimal tensile dose to constitute durable tissue alignment was screened by investigating the alignment of cytoskeleton and Col I after culturing the scaffold-free tissue constructs with various tensile doses (10% static tension for 1, 3, 7, and 10 days) followed by maintaining in a released state for 5 days. Fluorescence-conjugated phalloidin binding and immunofluorescence of Col I indicated that the duration of static tension for more than 7 days resulted in durable tissue alignment for at least 5 days in the tension-released state. The tissues subjected to tensile stimulation for 7 days followed by 14 days in a released state in chondrogenic media resulted in abundant cartilaginous matrix as well as uniaxial anisotropic alignment. Our results show that the optimized tensile dose can facilitate the successful reconstruction of fibrocartilage by modulating the characteristics of matrix production by MCs.


Assuntos
Colágeno Tipo I , Mecanotransdução Celular , Colágeno Tipo I/metabolismo , Engenharia Tecidual/métodos , Fibrocartilagem/metabolismo , Colágeno/metabolismo
13.
Sci Adv ; 9(46): eadi1394, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37976351

RESUMO

Vascular dysfunction resulting from endothelial hyperpermeability is a common and important feature of critical illness due to sepsis, trauma, and other conditions associated with acute systemic inflammation. Clarkson disease [monoclonal gammopathy-associated idiopathic systemic capillary leak syndrome (ISCLS)] is a rare, orphan disorder marked by spontaneous and recurrent episodes of hypotensive shock and peripheral edema due to widespread vascular leakage in peripheral tissues. Mortality from acute flares approaches 30% due to lack of effective therapies. We evaluated a monoclonal antibody (4E2) specific for the endothelial receptor tyrosine kinase Tie2 in ISCLS models. 4E2 activated Tie2 in ISCLS patient-derived endothelial cells and reduced baseline and proinflammatory mediator-induced barrier dysfunction. 4E2 also reduced mortality and/or vascular leakage associated with systemic histamine challenge or influenza infection in the SJL/J mouse model of ISCLS. These findings support a critical role for Tie2 dysregulation in ISCLS and highlight a viable therapeutic approach to this catastrophic disorder.


Assuntos
Síndrome de Vazamento Capilar , Sepse , Camundongos , Animais , Humanos , Síndrome de Vazamento Capilar/complicações , Células Endoteliais , Ligantes , Anticorpos , Receptor TIE-2
14.
Exp Mol Med ; 55(2): 470-484, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36828931

RESUMO

Tumor progression is intimately associated with the vasculature, as tumor proliferation induces angiogenesis and tumor cells metastasize to distant organs via blood vessels. However, whether tumor invasion is associated with blood vessels remains unknown. As glioblastoma (GBM) is featured by aggressive invasion and vascular abnormalities, we characterized the onset of vascular remodeling in the diffuse tumor infiltrating zone by establishing new spontaneous GBM models with robust invasion capacity. Normal brain vessels underwent a gradual transition to severely impaired tumor vessels at the GBM periphery over several days. Increasing vasodilation from the tumor periphery to the tumor core was also found in human GBM. The levels of vascular endothelial growth factor (VEGF) and VEGF receptor 2 (VEGFR2) showed a spatial correlation with the extent of vascular abnormalities spanning the tumor-invading zone. Blockade of VEGFR2 suppressed vascular remodeling at the tumor periphery, confirming the role of VEGF-VEGFR2 signaling in the invasion-associated vascular transition. As angiopoietin-2 (ANGPT2) was expressed in only a portion of the central tumor vessels, we developed a ligand-independent tunica interna endothelial cell kinase 2 (Tie2)-activating antibody that can result in Tie2 phosphorylation in vivo. This agonistic anti-Tie2 antibody effectively normalized the vasculature in both the tumor periphery and tumor center, similar to the effects of VEGFR2 blockade. Mechanistically, this antibody-based Tie2 activation induced VE-PTP-mediated VEGFR2 dephosphorylation in vivo. Thus, our study reveals that the normal-to-tumor vascular transition is spatiotemporally associated with GBM invasion and may be controlled by Tie2 activation via a novel mechanism of action.


Assuntos
Glioblastoma , Humanos , Glioblastoma/patologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Remodelação Vascular , Transdução de Sinais , Fatores de Crescimento do Endotélio Vascular
15.
Chemosphere ; 313: 137300, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36414038

RESUMO

Fourier transform infrared (FTIR) and Raman microspectroscopy are methods applied in microplastics research to determine the chemical identity of microplastics. These techniques enable quantification of microplastic particles across various matrices. Previous work has highlighted the benefits and limitations of each method and found these to be complimentary. Within this work, metadata collected within an interlaboratory method validation study was used to determine which variables most influenced successful chemical identification of un-weathered microplastics in simulated drinking water samples using FTIR and Raman microspectroscopy. No variables tested had a strong correlation with the accuracy of chemical identification (r = ≤0.63). The variables most correlated with accuracy differed between the two methods, and include both physical characteristics of particles (color, morphology, size, polymer type), and instrumental parameters (spectral collection mode, spectral range). Based on these results, we provide technical recommendations to improve capabilities of both methods for measuring microplastics in drinking water and highlight priorities for further research. For FTIR microspectroscopy, recommendations include considering the type of particle in question to inform sample presentation and spectral collection mode for sample analysis. Instrumental parameters should be adjusted for certain particle types when using Raman microspectroscopy. For both instruments, the study highlighted the need for harmonization of spectral reference libraries among research groups, including the use of libraries containing reference materials of both weathered plastic and natural materials that are commonly found in environmental samples.


Assuntos
Água Potável , Poluentes Químicos da Água , Microplásticos/análise , Plásticos/análise , Água Potável/análise , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos
16.
Chemosphere ; 308(Pt 3): 136449, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36115477

RESUMO

Microscopy is often the first step in microplastic analysis and is generally followed by spectroscopy to confirm material type. The value of microscopy lies in its ability to provide count, size, color, and morphological information to inform toxicity and source apportionment. To assess the accuracy and precision of microscopy, we conducted a method evaluation study. Twenty-two laboratories from six countries were provided three blind spiked clean water samples and asked to follow a standard operating procedure. The samples contained a known number of microplastics with different morphologies (fiber, fragment, sphere), colors (clear, white, green, blue, red, and orange), polymer types (PE, PS, PVC, and PET), and sizes (ranging from roughly 3-2000 µm), and natural materials (natural hair, fibers, and shells; 100-7000 µm) that could be mistaken for microplastics (i.e., false positives). Particle recovery was poor for the smallest size fraction (3-20 µm). Average recovery (±StDev) for all reported particles >50 µm was 94.5 ± 56.3%. After quality checks, recovery for >50 µm spiked particles was 51.3 ± 21.7%. Recovery varied based on morphology and color, with poorest recovery for fibers and the largest deviations for clear and white particles. Experience mattered; less experienced laboratories tended to report higher concentration and had a higher variance among replicates. Participants identified opportunity for increased accuracy and precision through training, improved color and morphology keys, and method alterations relevant to size fractionation. The resulting data informs future work, constraining and highlighting the value of microscopy for microplastics.


Assuntos
Microplásticos , Poluentes Químicos da Água , Monitoramento Ambiental , Humanos , Microscopia , Plásticos/análise , Polímeros , Cloreto de Polivinila/análise , Água/análise , Poluentes Químicos da Água/análise
17.
J Cell Physiol ; 226(5): 1204-13, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-20945355

RESUMO

The therapeutic use of ionizing radiation (e.g., X-rays and γ-rays) needs to inflict minimal damage on non-target tissue. Recent studies have shown that substance P (SP) mediates multiple activities in various cell types, including cell proliferation, anti-apoptotic responses, and inflammatory processes. The present study investigated the effects of SP on γ-irradiated bone marrow stem cells (BMSCs). In mouse bone marrow extracts, SP prolonged activation of Erk1/2 and enhanced Bcl-2 expression, but attenuated the activation of apoptotic molecules (e.g., p38 and cleaved caspase-3) and down-regulated Bax. We also observed that SP-decreased apoptotic cell death and stimulated cell proliferation in γ-irradiated mouse bone marrow tissues through TUNEL assay and PCNA analysis. To determine how SP affects bone marrow stem cell populations, mouse bone marrow cells were isolated and colony-forming unit (CFU) of mesenchymal stem cells (MSCs) and hematopoietic stem cells (HSCs) was estimated. SP-pretreated ones showed higher CFUs of MSC and HSC than untreated ones. Furthermore, when SP was pretreated in cultured human MSC, it significantly decreased apoptotic cells at 48 and 72 h after γ-irradiation. Compared with untreated cells, SP-treated human MSCs showed reduced cleavage of apoptotic molecules such as caspase-8, -9, -3, and poly ADP-ribose polymerase (PARP). Thus, our results suggest that SP alleviates γ-radiation-induced damage to mouse BMSCs and human MSCs via regulation of the apoptotic pathway.


Assuntos
Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/efeitos da radiação , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/efeitos da radiação , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos da radiação , Substância P/administração & dosagem , Irradiação Corporal Total , Animais , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Proteínas Reguladoras de Apoptose/metabolismo , Células da Medula Óssea/metabolismo , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/efeitos da radiação , Células Cultivadas , Ensaio de Unidades Formadoras de Colônias , Feminino , Células-Tronco Hematopoéticas/metabolismo , Humanos , Marcação In Situ das Extremidades Cortadas , Injeções Intraperitoneais , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Antígeno Nuclear de Célula em Proliferação/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/efeitos da radiação , Fatores de Tempo
18.
J Funct Biomater ; 12(3)2021 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-34287337

RESUMO

Literature in the field of stem cell therapy indicates that, when stem cells in a state of single-cell suspension are injected systemically, they show poor in vivo survival, while such cells show robust cell survival and regeneration activity when transplanted in the state of being attached on a biomaterial surface. Although an attachment-deprived state induces anoikis, when cell-surface engineering technology was adopted for stem cells in a single-cell suspension state, cell survival and regenerative activity dramatically improved. The biochemical signal coming from ECM (extracellular matrix) molecules activates the cell survival signal transduction pathway and prevents anoikis. According to the target disease, various therapeutic cells can be engineered to improve their survival and regenerative activity, and there are several types of biomaterials available for cell-surface engineering. In this review, biomaterial types and application strategies for cell-surface engineering are presented along with their expected efficacy.

19.
Cartilage ; 13(2_suppl): 980S-990S, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-32748647

RESUMO

OBJECTIVE: Meniscus tissue is composed of highly aligned type I collagen embedded with cartilaginous matrix. This histological feature endows mechanical properties, such as tensile strength along the direction of the collagen alignment and endurance to compressive load induced by weight bearing. The main objective of this study was to compare the fibrocartilage construction capability of different cell sources in the presence of mechanical stimuli. DESIGN: Synovial multipotent stem cells (SvMSCs) and meniscal chondrocytes (MCs) from immature and mature rabbits were maintained under similar conditions for comparative evaluation of growth characteristics and senescence tendency. The differentiation potential of cell sources, including fibrocartilage generation, were comparatively evaluated. To determine the capability of fibrocartilage generation, cultured cell sheets were rolled up to produce cable-form tissue and subjected to chondrogenic induction in the presence or absence of static tension. RESULTS: Although SvMSCs showed superior cell growth characteristics during in vitro cell expansion, senescence-associated ß-galactosidase expression was consistently higher, compared with MCs. MCs showed glycosaminoglycan (GAG)-rich matrix formation during default in vitro chondrogenesis. While application of static tension significantly reduced GAG production, MCs continued to show robust tissue growth. SvMSCs showed inferior chondrogenic differentiation and diminished tissue growth in the presence of static tension. CONCLUSIONS: While SvMSCs produced fibrous tissue during default in vitro chondrogenesis, their fibrocartilage generation potential in the presence of static tension was significantly lower, compared with MCs. Our results support evaluation of cellular response to tensile stimulus as a decisive factor in determining the ideal cell source for fibrocartilage reconstruction.


Assuntos
Condrócitos , Menisco , Animais , Condrogênese/fisiologia , Fibrocartilagem/metabolismo , Células-Tronco Multipotentes , Coelhos
20.
Polymers (Basel) ; 13(11)2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-34073715

RESUMO

We aimed to improve the mechanical properties of alginate fibers by reinforcing with various cellulose nanofibrils (CNFs). Pure cellulose nanofibril (PCNF), lignocellulose nanofibril (LCNF) obtained via deep eutectic solvent (DES) pretreatment, and TEMPO-oxidized lignocellulose nanofibril (TOLCNF) were employed. Sodium alginate (AL) was mixed with PCNF, LCNF, and TOLCNF with a CNF content of 5-30%. To fabricate microcomposite filaments, the suspensions were wet-spun in calcium chloride (CaCl2) solution through a microfluidic channel. Average diameters of the microcomposite filaments were in the range of 40.2-73.7 µm, which increased with increasing CNF content and spinning rate. The tensile strength and elastic modulus improved as the CNF content increased to 10%, but the addition of 30% CNF deteriorated the tensile properties. The tensile strength and elastic modulus were in the order of LCNF/AL > PCNF/AL > TOLCNF/AL > AL. An increase in the spinning rate improved the tensile properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA