Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Opt Lett ; 49(3): 658-661, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38300083

RESUMO

Integrated optical modulators (IOMs) are crucial components of on-chip photonic circuits. However, most conventional IOMs are restricted to specific spectral bands. Here, we leveraged the wide transparency window of lithium niobate in conjunction with the two-pulley coupled resonator method. This approach led to the development of a hyperband electro-optic (EO) modulator that operates over an expansive spectral range from 775 to 1550 nm on a single device. The demonstrated EO modulator exhibits half-wave voltage-length products of 0.25, 0.93, and 0.68 V·cm at wavelengths of 1539.50, 969.70, and 775.17 nm, respectively.

2.
Opt Express ; 31(22): 35624-35631, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-38017729

RESUMO

We demonstrate the quantitative pressure measurement of gas molecules in the mid-infrared using chip-based supercontinuum and cepstrum analysis without additional measurements for baseline normalization. A supercontinuum generated in an on-chip waveguide made of chalcogenide glass having high nonlinearity passes through CO gas and provides a transmission spectrum. The gas absorption information is deconvoluted from the original supercontinuum spectral information containing temporal fluctuation by cepstrum analysis and extracted simply by applying a bandpass filter in the temporal domain. The gas pressure estimated from the extracted absorption information is consistent with the value measured by a pressure gauge within a difference of 1.25%, despite spectral fluctuations in the supercontinuum baseline comparable to the spectral depth of the gas absorption lines.

3.
Opt Express ; 31(18): 29321-29330, 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37710735

RESUMO

We successfully control the interaction dynamics between optical parametric oscillation (OPO) and stimulated Raman scattering, leading to the generation of distinct frequency comb states in a microresonator. Through Raman-scattered photons, a Raman comb with a sech2 envelope is demonstrated having a broad RF beat note linewidth of several hundred kHz. Moreover, under a specific coupling regime, we successfully generate self-locked Raman single-solitons which is confirmed by a narrow RF beat note of 25 Hz. Remarkably, this spontaneous Raman soliton is deterministically generated through adiabatic pump frequency detuning without the requirement of external locking mechanisms. Additionally, we identify a frequency comb with an unconventional envelope that can be fitted with a Lorentzian × sech2 function, generated via an anti-Stokes process with respect to the Raman comb.

4.
Opt Express ; 30(14): 25707-25717, 2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-36237095

RESUMO

Transporting cold atoms between interconnected vacuum chambers is an important technique for increasing the versatility of cold atom setups, particularly for those that couple atoms to photonic devices. In this report, we introduce a method where we are able to image the atoms at all points during transport via moving optical dipole trap. Cooled 87Rb atoms are transported ∼50 cm into an auxiliary vacuum chamber while being monitored with a moving-frame imaging system for which in-situ characterization of the atom transport is demonstrated. Precise positioning of the atoms near photonic devices is also tested across several tapered fibers showing an axial positioning resolution of ∼450 µm.

5.
Opt Lett ; 47(1): 106-109, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34951891

RESUMO

To efficiently access light waves confined in a high-quality-factor (Q) microcavity over a wide spectral range, it is necessary to independently control coupling efficiency at different wavelengths. Here we suggest an approach to add a degree of freedom to control the coupling efficiency based on a two-point coupling geometry. By changing the phase difference between two paths connecting two coupling points, various combinations of coupling efficiencies at multiple wavelengths can be achieved. An analytic model describing the coupling property is derived and confirmed by experimental results. It is also shown that the coupling property can be modified by adjusting the effective refractive index difference between a waveguide and a resonator.

6.
Opt Lett ; 47(23): 6149-6152, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37219194

RESUMO

Controlling the optical coupling between a micro-resonator and waveguide plays a key role in on-chip photonic circuits. Here, we demonstrate a two-point coupled lithium niobate (LN) racetrack micro-resonator that enables us to electro-optically traverse a full set of the zero-, under-, critical-, and over-coupling regimes with minimized disturbance of the intrinsic properties of the resonant mode. The modulation between the zero- and critical-coupling conditions cost a resonant frequency shift of only ∼344.2 MHz and rarely changed the intrinsic quality (Q) factor of 4.6 × 105. Our device is a promising element in on-chip coherent photon storage/retrieval and its applications.

7.
Opt Lett ; 46(9): 2019-2022, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33929408

RESUMO

Dissipative Kerr solitons in ultra-high-Q resonators are extremely sensitive to the thermal behavior of the resonators. Especially for resonators with hydrophilic surfaces, moisture continuously adsorbs on their surfaces and causes additional absorption loss that results in an excessive thermal shift of resonance frequency. This change makes soliton mode locking more challenging or even impossible. Here, we report hydrophobic monolayer passivation using hexamethyldisilazane on ultra-high-Q silica wedge resonators. It was experimentally confirmed that the Q-factor and dispersion were maintained after passivation, and excess thermal shift by moisture was inhibited for more than three days in the atmosphere. Soliton mode locking was successfully performed with the resonator one month after passivation.

8.
Opt Lett ; 46(7): 1772-1775, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33793540

RESUMO

Reducing the complexity required for starting and maintaining a soliton state has been a major task to fully miniaturize soliton microcombs including the accompanying external operating systems. Here we experimentally examine the generative process of a self-stabilized soliton in which a continuous-wave pump detuned on the thermally stable blue side of a resonance generates a Brillouin lasing signal that relays the pump power to the soliton pulses via intracavity mode-coupling without breaking thermal self-stability. Based on a simple setup consisting of a free-running laser and a microcavity without any external feedback systems by virtue of internal thermal locking, single-soliton pulses of 11 GHz repetition rate were deterministically generated. We demonstrate that the single-soliton pulses can be passively maintained over several days in a laboratory environment with a phase noise performance of -137dBc/Hz at 100 kHz.

9.
Opt Lett ; 46(10): 2413-2416, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33988597

RESUMO

We report a supercontinuum generation (SCG) in a waveguide that spontaneously forms without an etching process during the deposition of a core material on a preformed ${\rm{Si}}{{\rm{O}}_2}$ substructure. The mechanism of dispersion control for this new, to the best of our knowledge, type of waveguide is analyzed by numerical simulation, which results in a design rule to achieve a target dispersion profile by adjusting the substructure geometry. SCG is experimentally demonstrated with a waveguide made of ${\rm{A}}{{\rm{s}}_2}{{\rm{S}}_3}$, chalcogenide glass, which has low material absorption over the mid-IR range. A dispersion-controlled waveguide with a length of 10 mm pumped with 77 pJ pulses at a telecommunication wavelength of 1560 nm resulted in a supercontinuum that extends by more than 1.5 octaves.

10.
Anal Chem ; 92(9): 6189-6193, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32298099

RESUMO

To determine the concentration of biomolecules using a label-free optical biosensor, it is necessary to measure the serial signal from the reaction starting point, which is inconvenient for practical applications. Here, we propose an alternative detection method for determining the concentration of a biomolecule. The method, which is derived from the fraction bound equation of the Langmuir adsorption model, determines the concentration relative to a reference sample with required accuracy, with a single measurement at any point in time. We also experimentally demonstrated the method and its accuracy by detecting streptavidin-biotin complexes using on-chip optical sensors based on active disk resonators integrated with microfluidic circuits. By performing the proposed method in a simultaneous parallel measurement scheme, signal fluctuations evenly induced in the detectors by external perturbations could be automatically suppressed, similar to the balanced detection method. We expect our approach to be applicable to practical applications where fast and accurate detection responses are needed.


Assuntos
Proteínas de Bactérias/análise , Técnicas Biossensoriais/métodos , Biotina/análogos & derivados , Técnicas Biossensoriais/instrumentação , Biotina/análise , Biotina/metabolismo , Cinética , Limite de Detecção , Técnicas Analíticas Microfluídicas , Modelos Teóricos , Espectrofotometria , Estreptavidina/metabolismo , Temperatura
11.
Opt Express ; 28(12): 18027-18034, 2020 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-32680004

RESUMO

We report on the diverse pulsed operation regimes of a femtosecond-laser-written Yb:KLuW channel waveguide laser emitting near 1040 nm. By the precise position tuning of a carbon-nanotube-coated saturable absorber (SA) mirror, the transition of the pulsed operation from Q-switching, Q-switched mode-locking and finally sub-GHz continuous-wave mode-locking are obtained based on the interplay of dispersion and mode area control. The Q-switched pulses exhibit typical fast SA Q-switched pulse characteristics depending on absorbed pump powers. In the Q-switched mode-locking, amplitude modulations of the mode-locked pulses on the Q-switched envelope are observed. The radio-frequency spectrum represents the coexistence of Q-switching and mode-locking signals. In the purely mode-locked operation, the waveguide laser generates 2.05-ps pulses at 0.5 GHz.

12.
Sens Actuators B Chem ; 320: 128351, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32501366

RESUMO

Recent advances in nucleic acid based testing using bio-optical sensor approaches have been introduced but most are based on hybridization between the optical sensor and the bio-molecule and not on an amplification mechanism. Direct nucleic acid amplification on an optical sensor has several technical limitations, such as the sensitivity of the temperature sensor, instrument complexity, and high background signal. We here describe a novel nucleic acid amplification method based on a whispering gallery mode active resonator and discuss its potential molecular diagnostic application. By implanting nanoclusters as active compounds, this active resonator operates without tapered fiber coupling and emits a strong photoluminescence signal with low background in the wavelength of low absorption in an aqueous environment that is typical of biosensors. Our method also offers an extremely low detection threshold down to a single copy within 10 min due to the strong light-matter interaction in a nano-gap structure. We envision that this active resonator provides a high refractive index contrast for tight mode confinement with simple alignment as well as the possibility of reducing the device size so that a point-of-care system with low-cost, high-sensitivity and simplicity.

13.
Opt Express ; 27(23): 34405-34415, 2019 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-31878488

RESUMO

Biosensing based on whispering-gallery mode (WGM) resonators has been continuously studied with great attention due to its excellent sensitivity guaranteeing the label-free detection. However, its practical impact is insignificant to date despite notable achievements in academic research. Here, we demonstrate a novel practical platform of on-chip WGM sensors integrated with microfluidic channels. By placing silicon nanoclusters as a stable active compound in micro-resonators, the sensor chip can be operated with a remote pump and readout, which simplifies the chip integration and connection to the external setup. In addition, silicon nanoclusters having large absorption cross-section over broad wavelength range allow active sensing for the first time with an LED pump in a top-illumination scheme which significantly reduces the complexity and cost of the measurement setup. The nano-slot structure of 25 nm gap width is embedded in the resonator where the target bio-molecules are selectively detected with the sensitivity enhanced by strongly confined mode-field. The sensitivity confirmed by real-time measurements for the streptavidin-biotin complex is 0.012 nm/nM, improved over 20 times larger than the previously reported WGM sensors with remote readout.


Assuntos
Algoritmos , Técnicas Biossensoriais , Luz , Proteínas de Bactérias/química , Biotina/análogos & derivados , Biotina/química , Processamento de Imagem Assistida por Computador
14.
Opt Express ; 25(13): 15581-15589, 2017 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-28788980

RESUMO

Chalcogenide glasses, with high nonlinearity and low loss, have captured research interest as an integrated device platform for near- and mid-infrared nonlinear optical devices. Compared to silicon-based microfabrication technologies, chalcogenide fabrication processes are less mature and a major challenge is obtaining high quality devices. In this paper, we report a hybrid resonator design leveraging a high quality silica resonator to achieve high Q factors with chalcogenide. The device is composed of a thin chalcogenide layer deposited on a silica wedge resonator. The hybrid resonators exhibit loaded Q factors up to 1.5 x 105 in the near-infrared region. We also measured the effective thermo-optic coefficient of the device to be 5.5x10-5/K, which agreed well with the bulk value. Thermal drift of the device can be significantly reduced by introducing a titanium dioxide cladding layer with a negative thermo-optic coefficient.

15.
Opt Express ; 22(5): 5196-208, 2014 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-24663859

RESUMO

Whispering gallery delay lines have demonstrated record propagation length on a silicon chip and can provide a way to transfer certain applications of optical fiber to wafer-based systems. Their design and fabrication requires careful control of waveguide curvature and etching conditions to minimize connection losses between elements of the delay line. Moreover, loss characterization based on optical backscatter requires normalization to account for the impact of curvature on backscatter rate. In this paper we provide details on design of Archimedean whispering-gallery spiral waveguides, their coupling into cascaded structures, as well as optical loss characterization by optical backscatter reflectometry.

16.
Opt Lett ; 39(2): 287-90, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24562128

RESUMO

We demonstrate narrow-linewidth-stimulated Brillouin lasers at 1064 nm from ultra-high-Q silica wedge disk resonators on silicon. Fundamental Schawlow-Townes frequency noise of the laser is on the order of 0.1 Hz2/Hz. The technical noise spectrum of the on-chip Brillouin laser is close to the thermodynamic noise limit of the resonator (thermorefractive noise) and is comparable to that of ultra-narrow-linewidth Nd:YAG lasers. The relative intensity noise of the Brillouin laser also is reduced by using an intensity-stabilized pump laser. Finally, low-noise microwave synthesis up to 32 GHz is demonstrated by heterodyne of first and third Brillouin Stokes lines from a single resonator.

17.
Opt Lett ; 39(4): 1046-8, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24562274

RESUMO

Supercontinuum generation is demonstrated in an on-chip silica spiral waveguide by launching 180 fs pulses from an optical parametric oscillator at the center wavelength of 1330 nm. With a coupled pulse energy of 2.17 nJ, the broadest spectrum in the fundamental TM mode extends from 936 to 1888 nm (162 THz) at -50 dB from peak. There is a good agreement between the measured spectrum and a simulation using a generalized nonlinear Schrödinger equation.

18.
Proc Natl Acad Sci U S A ; 108(15): 5976-9, 2011 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-21444782

RESUMO

We demonstrate a highly sensitive nanoparticle and virus detection method by using a thermal-stabilized reference interferometer in conjunction with an ultrahigh-Q microcavity. Sensitivity is sufficient to resolve shifts caused by binding of individual nanobeads in solution down to a record radius of 12.5 nm, a size approaching that of single protein molecules. A histogram of wavelength shift versus nanoparticle radius shows that particle size can be inferred from shift maxima. Additionally, the signal-to-noise ratio for detection of Influenza A virus is enhanced to 381 from the previously reported 31. The method does not use feedback stabilization of the probe laser. It is also observed that the conjunction of particle-induced backscatter and optical-path-induced shifts can be used to enhance detection signal-to-noise.


Assuntos
Técnicas Biossensoriais , Nanopartículas , Tamanho da Partícula , Vírus/isolamento & purificação , Humanos , Vírus da Influenza A/isolamento & purificação , Interferometria/métodos , Poliestirenos , Sensibilidade e Especificidade , Vírion/isolamento & purificação
19.
Opt Express ; 20(18): 20170-80, 2012 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-23037069

RESUMO

Recently, a high efficiency, narrow-linewidth, chip-based stimulated Brillouin laser (SBL) was demonstrated using an ultra-high-Q, silica-on-silicon resonator. In this work, this novel laser is more fully characterized. The Schawlow Townes linewidth formula for Brillouin laser operation is derived and compared to linewidth data, and the fitting is used to measure the mechanical thermal quanta contribution to the Brillouin laser linewidth. A study of laser mode pulling by the Brillouin optical gain spectrum is also presented, and high-order, cascaded operation of the SBL is demonstrated. Potential application of these devices to microwave sources and phase-coherent communication is discussed.


Assuntos
Lasers , Modelos Teóricos , Refratometria/instrumentação , Silício/química , Transdutores , Simulação por Computador , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Luz , Miniaturização , Espalhamento de Radiação
20.
Opt Express ; 20(20): 22819-29, 2012 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-23037432

RESUMO

Single-mode waveguide designs frequently support higher order transverse modes, usually as a consequence of process limitations such as lithography. In these systems, it is important to minimize coupling to higher-order modes so that the system nonetheless behaves single mode. We propose a variational approach to design adiabatic waveguide connections with minimal intermodal coupling. An application of this algorithm in designing the "S-bend" of a whispering-gallery spiral waveguide is demonstrated with approximately 0.05 dB insertion loss. Compared to other approaches, our algorithm requires less fabrication resolution and is able to minimize the transition loss over a broadband spectrum. The method can be applied to a wide range of turns and connections and has the advantage of handling connections with arbitrary boundary conditions.


Assuntos
Algoritmos , Modelos Teóricos , Dispositivos Ópticos , Refratometria/instrumentação , Ressonância de Plasmônio de Superfície/instrumentação , Simulação por Computador , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Luz , Espalhamento de Radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA