Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cell ; 164(1-2): 219-232, 2016 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-26771493

RESUMO

Although a number of repair strategies have been shown to promote axon outgrowth following neuronal injury in the mammalian CNS, it remains unclear whether regenerated axons establish functional synapses and support behavior. Here, in both juvenile and adult mice, we show that either PTEN and SOCS3 co-deletion, or co-overexpression of osteopontin (OPN)/insulin-like growth factor 1 (IGF1)/ciliary neurotrophic factor (CNTF), induces regrowth of retinal axons and formation of functional synapses in the superior colliculus (SC) but not significant recovery of visual function. Further analyses suggest that regenerated axons fail to conduct action potentials from the eye to the SC due to lack of myelination. Consistent with this idea, administration of voltage-gated potassium channel blockers restores conduction and results in increased visual acuity. Thus, enhancing both regeneration and conduction effectively improves function after retinal axon injury.


Assuntos
Axônios/fisiologia , Colículos Superiores/fisiologia , 4-Aminopiridina/farmacologia , Animais , Axônios/efeitos dos fármacos , Fator Neurotrófico Ciliar/metabolismo , Fenômenos Eletrofisiológicos , Olho/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Camundongos , Bainha de Mielina/metabolismo , Nervo Óptico , Osteopontina/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Bloqueadores dos Canais de Potássio/farmacologia , Regeneração/efeitos dos fármacos , Proteína 3 Supressora da Sinalização de Citocinas , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Sinapses
2.
Cereb Cortex ; 30(12): 6108-6120, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-32676666

RESUMO

Chronic symptoms indicating excess cortical excitability follow mild traumatic brain injury, particularly repetitive mild traumatic brain injury (rmTBI). Yet mechanisms underlying post-traumatic excitation/inhibition (E/I) ratio abnormalities may differ between the early and late post-traumatic phases. We therefore measured seizure threshold and cortical gamma-aminobutyric acid (GABA) and glutamate (Glu) concentrations, 1 and 6 weeks after rmTBI in mice. We also analyzed the structure of parvalbumin-positive interneurons (PVIs), their perineuronal nets (PNNs), and their electroencephalography (EEG) signature (gamma frequency band power). For mechanistic insight, we measured cortical oxidative stress, reflected in the reduced/oxidized glutathione (GSH/GSSG) ratio. We found that seizure susceptibility increased both early and late after rmTBI. However, whereas increased Glu dominated the E/I 1 week after rmTBI, Glu concentration normalized and the E/I was instead characterized by depressed GABA, reduced per-PVI parvalbumin expression, and reduced gamma EEG power at the 6-week post-rmTBI time point. Oxidative stress was increased early after rmTBI, where transient PNN degradation was noted, and progressed throughout the monitoring period. We conclude that GSH depletion, perhaps triggered by early Glu-mediated excitotoxicity, leads to late post-rmTBI loss of PVI-dependent cortical inhibitory tone. We thus propose dampening of Glu signaling, maintenance of redox state, and preservation of PVI inhibitory capacity as therapeutic targets for post-rmTBI treatment.


Assuntos
Concussão Encefálica/complicações , Encéfalo/fisiopatologia , Ácido Glutâmico/metabolismo , Interneurônios/fisiologia , Estresse Oxidativo , Convulsões/fisiopatologia , Ácido gama-Aminobutírico/metabolismo , Animais , Encéfalo/metabolismo , Ritmo Gama , Masculino , Camundongos Endogâmicos C57BL , Parvalbuminas/análise , Convulsões/etiologia , Convulsões/metabolismo
3.
Cereb Cortex ; 27(12): 5509-5524, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27909008

RESUMO

Many neuropsychiatric symptoms that follow traumatic brain injury (TBI), including mood disorders, sleep disturbance, chronic pain, and posttraumatic epilepsy (PTE) are attributable to compromised cortical inhibition. However, the temporal trajectory of cortical inhibition loss and its underlying mechanisms are not known. Using paired-pulse transcranial magnetic stimulation (ppTMS) and immunohistochemistry, we tracked functional and cellular changes of cortical inhibitory network elements after fluid-percussion injury (FPI) in rats. ppTMS revealed a progressive loss of cortical inhibition as early as 2 weeks after FPI. This profile paralleled the increasing levels of cortical oxidative stress, which was accompanied by a gradual loss of parvalbumin (PV) immunoreactivity in perilesional cortex. Preceding the PV loss, we identified a degradation of the perineuronal net (PNN)-a specialized extracellular structure enwrapping cortical PV-positive (PV+) inhibitory interneurons which binds the PV+ cell maintenance factor, Otx2. The trajectory of these impairments underlies the reduced inhibitory tone, which can contribute to posttraumatic neurological conditions, such as PTE. Taken together, our results highlight the use of ppTMS as a biomarker to track the course of cortical inhibitory dysfunction post-TBI. Moreover, the neuroprotective role of PNNs on PV+ cell function suggests antioxidant treatment or Otx2 enhancement as a promising prophylaxis for post-TBI symptoms.


Assuntos
Lesões Encefálicas Traumáticas/fisiopatologia , Córtex Cerebral/fisiopatologia , Interneurônios/metabolismo , Inibição Neural/fisiologia , Parvalbuminas/metabolismo , Animais , Lesões Encefálicas Traumáticas/patologia , Córtex Cerebral/patologia , Modelos Animais de Doenças , Progressão da Doença , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Lateralidade Funcional , Interneurônios/patologia , Masculino , Fatores de Transcrição Otx/metabolismo , Estresse Oxidativo/fisiologia , Ratos Long-Evans , Estimulação Magnética Transcraniana
4.
J Child Neurol ; 36(13-14): 1200-1209, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33624531

RESUMO

Succinic semialdehyde dehydrogenase deficiency (SSADHD) is a rare inborn metabolic disorder caused by the functional impairment of SSADH (encoded by the ALDH5A1 gene), an enzyme essential for metabolism of the inhibitory neurotransmitter γ-aminobutyric acid (GABA). In SSADHD, pathologic accumulation of GABA and its metabolite γ-hydroxybutyrate (GHB) results in broad spectrum encephalopathy including developmental delay, ataxia, seizures, and a heightened risk of sudden unexpected death in epilepsy (SUDEP). Proof-of-concept systemic SSADH restoration via enzyme replacement therapy increased survival of SSADH knockout mice, suggesting that SSADH restoration might be a viable intervention for SSADHD. However, before testing enzyme replacement therapy or gene therapy in patients, we must consider its safety and feasibility in the context of early brain development and unique SSADHD pathophysiology. Specifically, a profound use-dependent downregulation of GABAA receptors in SSADHD indicates a risk that any sudden SSADH restoration might diminish GABAergic tone and provoke seizures. In addition, the tight developmental regulation of GABA circuit plasticity might limit the age window when SSADH restoration is accomplished safely. Moreover, given SSADH expressions are cell type-specific, targeted instead of global restoration might be necessary. We therefore describe 3 key parameters for the clinical readiness of SSADH restoration: (1) rate, (2) timing, and (3) cell type specificity. Our work focuses on the construction of a novel SSADHD mouse model that allows "on-demand" SSADH restoration for the systematic investigation of these key parameters. We aim to understand the impacts of specific SSADH restoration protocols on brain physiology, accelerating bench-to-bedside development of enzyme replacement therapy or gene therapy for SSADHD patients.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/tratamento farmacológico , Erros Inatos do Metabolismo dos Aminoácidos/metabolismo , Deficiências do Desenvolvimento/tratamento farmacológico , Deficiências do Desenvolvimento/metabolismo , Terapia de Reposição de Enzimas/métodos , Succinato-Semialdeído Desidrogenase/deficiência , Ácido gama-Aminobutírico/efeitos dos fármacos , Ácido gama-Aminobutírico/metabolismo , Animais , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Succinato-Semialdeído Desidrogenase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA